Plotting

 Deng, Yang


STYLE: Improving Domain Transferability of Asking Clarification Questions in Large Language Model Powered Conversational Agents

arXiv.org Artificial Intelligence

Equipping a conversational search engine with strategies regarding when to ask clarification questions is becoming increasingly important across various domains. Attributing to the context understanding capability of LLMs and their access to domain-specific sources of knowledge, LLM-based clarification strategies feature rapid transfer to various domains in a post-hoc manner. However, they still struggle to deliver promising performance on unseen domains, struggling to achieve effective domain transferability. We take the first step to investigate this issue and existing methods tend to produce one-size-fits-all strategies across diverse domains, limiting their search effectiveness. In response, we introduce a novel method, called Style, to achieve effective domain transferability. Our experimental results indicate that Style bears strong domain transferability, resulting in an average search performance improvement of ~10% on four unseen domains.


CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly used to meet user information needs, but their effectiveness in dealing with user queries that contain various types of ambiguity remains unknown, ultimately risking user trust and satisfaction. To this end, we introduce CLAMBER, a benchmark for evaluating LLMs using a well-organized taxonomy. Building upon the taxonomy, we construct ~12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs. Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries, even enhanced by chain-of-thought (CoT) and few-shot prompting. These techniques may result in overconfidence in LLMs and yield only marginal enhancements in identifying ambiguity. Furthermore, current LLMs fall short in generating high-quality clarifying questions due to a lack of conflict resolution and inaccurate utilization of inherent knowledge. In this paper, CLAMBER presents a guidance and promotes further research on proactive and trustworthy LLMs. Our dataset is available at https://github.com/zt991211/CLAMBER


Towards Comprehensive and Efficient Post Safety Alignment of Large Language Models via Safety Patching

arXiv.org Artificial Intelligence

Safety alignment of large language models (LLMs) has been gaining increasing attention. However, current safety-aligned LLMs suffer from the fragile and imbalanced safety mechanisms, which can still be induced to generate unsafe responses, exhibit over-safety by rejecting safe user inputs, and fail to preserve general utility after safety alignment. To this end, we propose a novel post safety alignment (PSA) method to address these inherent and emerging safety challenges, including safety enhancement, over-safety mitigation, and utility preservation. In specific, we introduce \textsc{SafePatching}, a novel framework for comprehensive and efficient PSA, where two distinct safety patches are developed on the harmful data to enhance safety and mitigate over-safety concerns, and then seamlessly integrated into the target LLM backbone without compromising its utility. Extensive experiments show that \textsc{SafePatching} achieves a more comprehensive and efficient PSA than baseline methods. It even enhances the utility of the backbone, further optimizing the balance between being helpful and harmless in current aligned LLMs. Also, \textsc{SafePatching} demonstrates its superiority in continual PSA scenarios.


Selective Annotation via Data Allocation: These Data Should Be Triaged to Experts for Annotation Rather Than the Model

arXiv.org Artificial Intelligence

To obtain high-quality annotations under limited budget, semi-automatic annotation methods are commonly used, where a portion of the data is annotated by experts and a model is then trained to complete the annotations for the remaining data. However, these methods mainly focus on selecting informative data for expert annotations to improve the model predictive ability (i.e., triage-to-human data), while the rest of the data is indiscriminately assigned to model annotation (i.e., triage-to-model data). This may lead to inefficiencies in budget allocation for annotations, as easy data that the model could accurately annotate may be unnecessarily assigned to the expert, and hard data may be misclassified by the model. As a result, the overall annotation quality may be compromised. To address this issue, we propose a selective annotation framework called SANT. It effectively takes advantage of both the triage-to-human and triage-to-model data through the proposed error-aware triage and bi-weighting mechanisms. As such, informative or hard data is assigned to the expert for annotation, while easy data is handled by the model. Experimental results show that SANT consistently outperforms other baselines, leading to higher-quality annotation through its proper allocation of data to both expert and model workers. We provide pioneering work on data annotation within budget constraints, establishing a landmark for future triage-based annotation studies.


Concept -- An Evaluation Protocol on Conversational Recommender Systems with System-centric and User-centric Factors

arXiv.org Artificial Intelligence

The conversational recommendation system (CRS) has been criticized regarding its user experience in real-world scenarios, despite recent significant progress achieved in academia. Existing evaluation protocols for CRS may prioritize system-centric factors such as effectiveness and fluency in conversation while neglecting user-centric aspects. Thus, we propose a new and inclusive evaluation protocol, Concept, which integrates both system- and user-centric factors. We conceptualise three key characteristics in representing such factors and further divide them into six primary abilities. To implement Concept, we adopt a LLM-based user simulator and evaluator with scoring rubrics that are tailored for each primary ability. Our protocol, Concept, serves a dual purpose. First, it provides an overview of the pros and cons in current CRS models. Second, it pinpoints the problem of low usability in the "omnipotent" ChatGPT and offers a comprehensive reference guide for evaluating CRS, thereby setting the foundation for CRS improvement.


Strength Lies in Differences! Towards Effective Non-collaborative Dialogues via Tailored Strategy Planning

arXiv.org Artificial Intelligence

We investigate non-collaborative dialogue agents, which are expected to engage in strategic conversations with diverse users, for securing a mutual agreement that leans favorably towards the system's objectives. This poses two main challenges for existing dialogue agents: 1) The inability to integrate user-specific characteristics into the strategic planning, and 2) The difficulty of training strategic planners that can be generalized to diverse users. To address these challenges, we propose Trip to enhance the capability in tailored strategic planning, incorporating a user-aware strategic planning module and a population-based training paradigm. Through experiments on benchmark non-collaborative dialogue tasks, we demonstrate the effectiveness of Trip in catering to diverse users.


Incorporating External Knowledge and Goal Guidance for LLM-based Conversational Recommender Systems

arXiv.org Artificial Intelligence

This paper aims to efficiently enable large language models (LLMs) to use external knowledge and goal guidance in conversational recommender system (CRS) tasks. Advanced LLMs (e.g., ChatGPT) are limited in domain-specific CRS tasks for 1) generating grounded responses with recommendation-oriented knowledge, or 2) proactively leading the conversations through different dialogue goals. In this work, we first analyze those limitations through a comprehensive evaluation, showing the necessity of external knowledge and goal guidance which contribute significantly to the recommendation accuracy and language quality. In light of this finding, we propose a novel ChatCRS framework to decompose the complex CRS task into several sub-tasks through the implementation of 1) a knowledge retrieval agent using a tool-augmented approach to reason over external Knowledge Bases and 2) a goal-planning agent for dialogue goal prediction. Experimental results on two multi-goal CRS datasets reveal that ChatCRS sets new state-of-the-art benchmarks, improving language quality of informativeness by 17% and proactivity by 27%, and achieving a tenfold enhancement in recommendation accuracy.


Can Large Language Models Learn the Physics of Metamaterials? An Empirical Study with ChatGPT

arXiv.org Artificial Intelligence

Large language models (LLMs) such as ChatGPT, Gemini, LlaMa, and Claude are trained on massive quantities of text parsed from the internet and have shown a remarkable ability to respond to complex prompts in a manner often indistinguishable from humans. We present a LLM fine-tuned on up to 40,000 data that can predict electromagnetic spectra over a range of frequencies given a text prompt that only specifies the metasurface geometry. Results are compared to conventional machine learning approaches including feed-forward neural networks, random forest, linear regression, and K-nearest neighbor (KNN). Remarkably, the fine-tuned LLM (FT-LLM) achieves a lower error across all dataset sizes explored compared to all machine learning approaches including a deep neural network. We also demonstrate the LLM's ability to solve inverse problems by providing the geometry necessary to achieve a desired spectrum. LLMs possess some advantages over humans that may give them benefits for research, including the ability to process enormous amounts of data, find hidden patterns in data, and operate in higher-dimensional spaces. We propose that fine-tuning LLMs on large datasets specific to a field allows them to grasp the nuances of that domain, making them valuable tools for research and analysis.


Towards Human-centered Proactive Conversational Agents

arXiv.org Artificial Intelligence

Recent research on proactive conversational agents (PCAs) mainly focuses on improving the system's capabilities in anticipating and planning action sequences to accomplish tasks and achieve goals before users articulate their requests. This perspectives paper highlights the importance of moving towards building human-centered PCAs that emphasize human needs and expectations, and that considers ethical and social implications of these agents, rather than solely focusing on technological capabilities. The distinction between a proactive and a reactive system lies in the proactive system's initiative-taking nature. Without thoughtful design, proactive systems risk being perceived as intrusive by human users. We address the issue by establishing a new taxonomy concerning three key dimensions of human-centered PCAs, namely Intelligence, Adaptivity, and Civility. We discuss potential research opportunities and challenges based on this new taxonomy upon the five stages of PCA system construction. This perspectives paper lays a foundation for the emerging area of conversational information retrieval research and paves the way towards advancing human-centered proactive conversational systems.


Consecutive Model Editing with Batch alongside HooK Layers

arXiv.org Artificial Intelligence

As the typical retraining paradigm is unacceptably time- and resource-consuming, researchers are turning to model editing in order to seek an effective, consecutive, and batch-supportive way to edit the model behavior directly. Despite all these practical expectations, existing model editing methods fail to realize all of them. Furthermore, the memory demands for such succession-supportive model editing approaches tend to be prohibitive, frequently necessitating an external memory that grows incrementally over time. To cope with these challenges, we propose COMEBA-HK, a model editing method that is both consecutive and batch-supportive. COMEBA-HK is memory-friendly as it only needs a small amount of it to store several hook layers with updated weights. Experimental results demonstrate the superiority of our method over other batch-supportive model editing methods under both single-round and consecutive batch editing scenarios. Extensive analyses of COMEBA-HK have been conducted to verify the stability of our method over 1) the number of consecutive steps and 2) the number of editing instance.