Plotting

 Deng, Fang


Optimal Output Feedback Learning Control for Discrete-Time Linear Quadratic Regulation

arXiv.org Artificial Intelligence

This paper studies the linear quadratic regulation (LQR) problem of unknown discrete-time systems via dynamic output feedback learning control. In contrast to the state feedback, the optimality of the dynamic output feedback control for solving the LQR problem requires an implicit condition on the convergence of the state observer. Moreover, due to unknown system matrices and the existence of observer error, it is difficult to analyze the convergence and stability of most existing output feedback learning-based control methods. To tackle these issues, we propose a generalized dynamic output feedback learning control approach with guaranteed convergence, stability, and optimality performance for solving the LQR problem of unknown discrete-time linear systems. In particular, a dynamic output feedback controller is designed to be equivalent to a state feedback controller. This equivalence relationship is an inherent property without requiring convergence of the estimated state by the state observer, which plays a key role in establishing the off-policy learning control approaches. By value iteration and policy iteration schemes, the adaptive dynamic programming based learning control approaches are developed to estimate the optimal feedback control gain. In addition, a model-free stability criterion is provided by finding a nonsingular parameterization matrix, which contributes to establishing a switched iteration scheme. Furthermore, the convergence, stability, and optimality analyses of the proposed output feedback learning control approaches are given. Finally, the theoretical results are validated by two numerical examples.


Scalable Hierarchical Reinforcement Learning for Hyper Scale Multi-Robot Task Planning

arXiv.org Artificial Intelligence

To improve the efficiency of warehousing system and meet huge customer orders, we aim to solve the challenges of dimension disaster and dynamic properties in hyper scale multi-robot task planning (MRTP) for robotic mobile fulfillment system (RMFS). Existing research indicates that hierarchical reinforcement learning (HRL) is an effective method to reduce these challenges. Based on that, we construct an efficient multi-stage HRL-based multi-robot task planner for hyper scale MRTP in RMFS, and the planning process is represented with a special temporal graph topology. To ensure optimality, the planner is designed with a centralized architecture, but it also brings the challenges of scaling up and generalization that require policies to maintain performance for various unlearned scales and maps. To tackle these difficulties, we first construct a hierarchical temporal attention network (HTAN) to ensure basic ability of handling inputs with unfixed lengths, and then design multi-stage curricula for hierarchical policy learning to further improve the scaling up and generalization ability while avoiding catastrophic forgetting. Additionally, we notice that policies with hierarchical structure suffer from unfair credit assignment that is similar to that in multi-agent reinforcement learning, inspired of which, we propose a hierarchical reinforcement learning algorithm with counterfactual rollout baseline to improve learning performance. Experimental results demonstrate that our planner outperform other state-of-the-art methods on various MRTP instances in both simulated and real-world RMFS. Also, our planner can successfully scale up to hyper scale MRTP instances in RMFS with up to 200 robots and 1000 retrieval racks on unlearned maps while keeping superior performance over other methods.


METER: A Dynamic Concept Adaptation Framework for Online Anomaly Detection

arXiv.org Artificial Intelligence

Real-time analytics and decision-making require online anomaly detection (OAD) to handle drifts in data streams efficiently and effectively. Unfortunately, existing approaches are often constrained by their limited detection capacity and slow adaptation to evolving data streams, inhibiting their efficacy and efficiency in handling concept drift, which is a major challenge in evolving data streams. In this paper, we introduce METER, a novel dynamic concept adaptation framework that introduces a new paradigm for OAD. METER addresses concept drift by first training a base detection model on historical data to capture recurring central concepts, and then learning to dynamically adapt to new concepts in data streams upon detecting concept drift. Particularly, METER employs a novel dynamic concept adaptation technique that leverages a hypernetwork to dynamically generate the parameter shift of the base detection model, providing a more effective and efficient solution than conventional retraining or fine-tuning approaches. Further, METER incorporates a lightweight drift detection controller, underpinned by evidential deep learning, to support robust and interpretable concept drift detection. We conduct an extensive experimental evaluation, and the results show that METER significantly outperforms existing OAD approaches in various application scenarios.


Flexible Job Shop Scheduling via Dual Attention Network Based Reinforcement Learning

arXiv.org Artificial Intelligence

Flexible manufacturing has given rise to complex scheduling problems such as the flexible job shop scheduling problem (FJSP). In FJSP, operations can be processed on multiple machines, leading to intricate relationships between operations and machines. Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP. However, the quality of solutions still has room for improvement relative to that by the exact methods such as OR-Tools. To address this issue, this paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making. The complex relationships between operations and machines are represented precisely and concisely, for which a dual-attention network (DAN) comprising several interconnected operation message attention blocks and machine message attention blocks is proposed. The DAN exploits the complicated relationships to construct production-adaptive operation and machine features to support high-quality decisionmaking. Experimental results using synthetic data as well as public benchmarks corroborate that the proposed approach outperforms both traditional PDRs and the state-of-the-art DRL method. Moreover, it achieves results comparable to exact methods in certain cases and demonstrates favorable generalization ability to large-scale and real-world unseen FJSP tasks.