Plotting

 Deng, Cheng


PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue Model

arXiv.org Artificial Intelligence

In the research of end-to-end dialogue systems, using real-world knowledge to generate natural, fluent, and human-like utterances with correct answers is crucial. However, domain-specific conversational dialogue systems may be incoherent and introduce erroneous external information to answer questions due to the out-of-vocabulary issue or the wrong knowledge from the parameters of the neural network. In this work, we propose PK-Chat, a Pointer network guided Knowledge-driven generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs. The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge. Moreover, based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences. Finally, an academic dialogue benchmark is constructed to evaluate the quality of dialogue systems in academic scenarios and the source code is available online.


Adaptive Hierarchical Similarity Metric Learning with Noisy Labels

arXiv.org Artificial Intelligence

Deep Metric Learning (DML) plays a critical role in various machine learning tasks. However, most existing deep metric learning methods with binary similarity are sensitive to noisy labels, which are widely present in real-world data. Since these noisy labels often cause severe performance degradation, it is crucial to enhance the robustness and generalization ability of DML. In this paper, we propose an Adaptive Hierarchical Similarity Metric Learning method. It considers two noise-insensitive information, \textit{i.e.}, class-wise divergence and sample-wise consistency. Specifically, class-wise divergence can effectively excavate richer similarity information beyond binary in modeling by taking advantage of Hyperbolic metric learning, while sample-wise consistency can further improve the generalization ability of the model using contrastive augmentation. More importantly, we design an adaptive strategy to integrate this information in a unified view. It is noteworthy that the new method can be extended to any pair-based metric loss. Extensive experimental results on benchmark datasets demonstrate that our method achieves state-of-the-art performance compared with current deep metric learning approaches.


Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs

arXiv.org Artificial Intelligence

Graph neural networks are emerging as promising methods for modeling molecular graphs, in which nodes and edges correspond to atoms and chemical bonds, respectively. Recent studies show that when 3D molecular geometries, such as bond lengths and angles, are available, molecular property prediction tasks can be made more accurate. However, computing of 3D molecular geometries requires quantum calculations that are computationally prohibitive. For example, accurate calculation of 3D geometries of a small molecule requires hours of computing time using density functional theory (DFT). Here, we propose to predict the ground-state 3D geometries from molecular graphs using machine learning methods. To make this feasible, we develop a benchmark, known as Molecule3D, that includes a dataset with precise ground-state geometries of approximately 4 million molecules derived from DFT. We also provide a set of software tools for data processing, splitting, training, and evaluation, etc. Specifically, we propose to assess the error and validity of predicted geometries using four metrics. We implement two baseline methods that either predict the pairwise distance between atoms or atom coordinates in 3D space. Experimental results show that, compared with generating 3D geometries with RDKit, our method can achieve comparable prediction accuracy but with much smaller computational costs. Our Molecule3D is available as a module of the MoleculeX software library (https://github.com/divelab/MoleculeX).


Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning

arXiv.org Machine Learning

The privacy-preserving federated learning for vertically partitioned data has shown promising results as the solution of the emerging multi-party joint modeling application, in which the data holders (such as government branches, private finance and e-business companies) collaborate throughout the learning process rather than relying on a trusted third party to hold data. However, existing federated learning algorithms for vertically partitioned data are limited to synchronous computation. To improve the efficiency when the unbalanced computation/communication resources are common among the parties in the federated learning system, it is essential to develop asynchronous training algorithms for vertically partitioned data while keeping the data privacy. In this paper, we propose an asynchronous federated SGD (AFSGD-VP) algorithm and its SVRG and SAGA variants on the vertically partitioned data. Moreover, we provide the convergence analyses of AFSGD-VP and its SVRG and SAGA variants under the condition of strong convexity. We also discuss their model privacy, data privacy, computational complexities and communication costs. To the best of our knowledge, AFSGD-VP and its SVRG and SAGA variants are the first asynchronous federated learning algorithms for vertically partitioned data. Extensive experimental results on a variety of vertically partitioned datasets not only verify the theoretical results of AFSGD-VP and its SVRG and SAGA variants, but also show that our algorithms have much higher efficiency than the corresponding synchronous algorithms.


Deep Spectral Clustering using Dual Autoencoder Network

arXiv.org Machine Learning

The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches.


Bilevel Distance Metric Learning for Robust Image Recognition

Neural Information Processing Systems

Metric learning, aiming to learn a discriminative Mahalanobis distance matrix M that can effectively reflect the similarity between data samples, has been widely studied in various image recognition problems. Most of the existing metric learning methods input the features extracted directly from the original data in the preprocess phase. What's worse, these features usually take no consideration of the local geometrical structure of the data and the noise that exists in the data, thus they may not be optimal for the subsequent metric learning task. In this paper, we integrate both feature extraction and metric learning into one joint optimization framework and propose a new bilevel distance metric learning model. Specifically, the lower level characterizes the intrinsic data structure using graph regularized sparse coefficients, while the upper level forces the data samples from the same class to be close to each other and pushes those from different classes far away. In addition, leveraging the KKT conditions and the alternating direction method (ADM), we derive an efficient algorithm to solve the proposed new model. Extensive experiments on various occluded datasets demonstrate the effectiveness and robustness of our method.


Bilevel Distance Metric Learning for Robust Image Recognition

Neural Information Processing Systems

Metric learning, aiming to learn a discriminative Mahalanobis distance matrix M that can effectively reflect the similarity between data samples, has been widely studied in various image recognition problems. Most of the existing metric learning methods input the features extracted directly from the original data in the preprocess phase. What's worse, these features usually take no consideration of the local geometrical structure of the data and the noise existed in the data, thus they may not be optimal for the subsequent metric learning task. In this paper, we integrate both feature extraction and metric learning into one joint optimization framework and propose a new bilevel distance metric learning model. Specifically, the lower level characterizes the intrinsic data structure using graph regularized sparse coefficients, while the upper level forces the data samples from the same class to be close to each other and pushes those from different classes far away. In addition, leveraging the KKT conditions and the alternating direction method (ADM), we derive an efficient algorithm to solve the proposed new model. Extensive experiments on various occluded datasets demonstrate the effectiveness and robustness of our method.


Dictionary Learning in Optimal Metric Space

AAAI Conferences

Dictionary learning has been widely used in machine learning field to address many real-world applications, such as classification and denoising. In recent years, many new dictionary learning methods have been proposed. Most of them are designed to solve unsupervised problem without any prior information or supervised problem with the label information. But in real world, as usual, we can only obtain limited side information as prior information rather than label information. The existing methods donโ€™t take into account the side information, let alone learning a good dictionary through using the side information. To tackle it, we propose a new unified unsupervised model which naturally integrates metric learning to enhance dictionary learning model with fully utilizing the side information. The proposed method updates metric space and dictionary adaptively and alternatively, which ensures learning optimal metric space and dictionary simultaneously. Besides, our method can also deal well with highdimensional data. Extensive experiments show the efficiency of our proposed method, and a better performance can be derived in real-world image clustering applications.


New l 2,1 -Norm Relaxation of Multi-Way Graph Cut for Clustering

AAAI Conferences

The clustering methods have absorbed even-increasing attention in machine learning and computer vision communities in recent years. Exploring manifold information in multi-way graph cut clustering, such as ratio cut clustering, has shown its promising performance. However, traditional multi-way ratio cut clustering method is NP-hard and thus the spectral solution may deviate from the optimal one. In this paper, we propose a new relaxed multi-way graph cut clustering method, where l 2,1 -norm distance instead of squared distance is utilized to preserve the solution having much more clearer cluster structures. Furthermore, the resulting solution is constrained with normalization to obtain more sparse representation, which can encourage the solution to contain more discrete values with many zeros. For the objective function, it is very difficult to optimize due to minimizing the ratio of two non-smooth items. To address this problem, we transform the objective function into a quadratic problem on the Stiefel manifold (QPSM), and introduce a novel yet efficient iterative algorithm to solve it. Experimental results on several benchmark datasets show that our method significantly outperforms several state-of-the-art clustering approaches.


Group Sparse Additive Machine

Neural Information Processing Systems

A family of learning algorithms generated from additive models have attracted much attention recently for their flexibility and interpretability in high dimensional data analysis. Among them, learning models with grouped variables have shown competitive performance for prediction and variable selection. However, the previous works mainly focus on the least squares regression problem, not the classification task. Thus, it is desired to design the new additive classification model with variable selection capability for many real-world applications which focus on high-dimensional data classification. To address this challenging problem, in this paper, we investigate the classification with group sparse additive models in reproducing kernel Hilbert spaces. A novel classification method, called as \emph{group sparse additive machine} (GroupSAM), is proposed to explore and utilize the structure information among the input variables. Generalization error bound is derived and proved by integrating the sample error analysis with empirical covering numbers and the hypothesis error estimate with the stepping stone technique. Our new bound shows that GroupSAM can achieve a satisfactory learning rate with polynomial decay. Experimental results on synthetic data and seven benchmark datasets consistently show the effectiveness of our new approach.