Plotting

 Demmler, Daniel


Lessons Learned: Defending Against Property Inference Attacks

arXiv.org Artificial Intelligence

This work investigates and evaluates multiple defense strategies against property inference attacks (PIAs), a privacy attack against machine learning models. Given a trained machine learning model, PIAs aim to extract statistical properties of its underlying training data, e.g., reveal the ratio of men and women in a medical training data set. While for other privacy attacks like membership inference, a lot of research on defense mechanisms has been published, this is the first work focusing on defending against PIAs. With the primary goal of developing a generic mitigation strategy against white-box PIAs, we propose the novel approach property unlearning. Extensive experiments with property unlearning show that while it is very effective when defending target models against specific adversaries, property unlearning is not able to generalize, i.e., protect against a whole class of PIAs. To investigate the reasons behind this limitation, we present the results of experiments with the explainable AI tool LIME. They show how state-of-the-art property inference adversaries with the same objective focus on different parts of the target model. We further elaborate on this with a follow-up experiment, in which we use the visualization technique t-SNE to exhibit how severely statistical training data properties are manifested in machine learning models. Based on this, we develop the conjecture that post-training techniques like property unlearning might not suffice to provide the desirable generic protection against PIAs. As an alternative, we investigate the effects of simpler training data preprocessing methods like adding Gaussian noise to images of a training data set on the success rate of PIAs. We conclude with a discussion of the different defense approaches, summarize the lessons learned and provide directions for future work.


Trustworthy AI Inference Systems: An Industry Research View

arXiv.org Artificial Intelligence

In this work, we provide an industry research view for approaching the design, deployment, and operation of trustworthy Artificial Intelligence (AI) inference systems. Such systems provide customers with timely, informed, and customized inferences to aid their decision, while at the same time utilizing appropriate security protection mechanisms for AI models. Additionally, such systems should also use Privacy-Enhancing Technologies (PETs) to protect customers' data at any time. To approach the subject, we start by introducing trends in AI inference systems. We continue by elaborating on the relationship between Intellectual Property (IP) and private data protection in such systems. Regarding the protection mechanisms, we survey the security and privacy building blocks instrumental in designing, building, deploying, and operating private AI inference systems. For example, we highlight opportunities and challenges in AI systems using trusted execution environments combined with more recent advances in cryptographic techniques to protect data in use. Finally, we outline areas of further development that require the global collective attention of industry, academia, and government researchers to sustain the operation of trustworthy AI inference systems.