Dell'
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.