Plotting

 Delfosse, Quentin


Interpretable and Explainable Logical Policies via Neurally Guided Symbolic Abstraction

arXiv.org Artificial Intelligence

The limited priors required by neural networks make them the dominating choice to encode and learn policies using reinforcement learning (RL). However, they are also black-boxes, making it hard to understand the agent's behaviour, especially when working on the image level. Therefore, neuro-symbolic RL aims at creating policies that are interpretable in the first place. Unfortunately, interpretability is not explainability. To achieve both, we introduce Neurally gUided Differentiable loGic policiEs (NUDGE). NUDGE exploits trained neural network-based agents to guide the search of candidate-weighted logic rules, then uses differentiable logic to train the logic agents. Our experimental evaluation demonstrates that NUDGE agents can induce interpretable and explainable policies while outperforming purely neural ones and showing good flexibility to environments of different initial states and problem sizes.


Boosting Object Representation Learning via Motion and Object Continuity

arXiv.org Artificial Intelligence

Recent unsupervised multi-object detection models have shown impressive performance improvements, largely attributed to novel architectural inductive biases. Unfortunately, they may produce suboptimal object encodings for downstream tasks. To overcome this, we propose to exploit object motion and continuity, i.e., objects do not pop in and out of existence. This is accomplished through two mechanisms: (i) providing priors on the location of objects through integration of optical flow, and (ii) a contrastive object continuity loss across consecutive image frames. Rather than developing an explicit deep architecture, the resulting Motion and Object Continuity (MOC) scheme can be instantiated using any baseline object detection model. Our results show large improvements in the performances of a SOTA model in terms of object discovery, convergence speed and overall latent object representations, particularly for playing Atari games. Overall, we show clear benefits of integrating motion and object continuity for downstream tasks, moving beyond object representation learning based only on reconstruction.


OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments

arXiv.org Artificial Intelligence

Cognitive science and psychology suggest that object-centric representations of complex scenes are a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep reinforcement learning approaches rely on only pixel-based representations that do not capture the compositional properties of natural scenes. For this, we need environments and datasets that allow us to work and evaluate object-centric approaches. We present OCAtari, a set of environment that provides object-centric state representations of Atari games, the most-used evaluation framework for deep RL approaches. OCAtari also allows for RAM state manipulations of the games to change and create specific or even novel situations. The code base for this work is available at github.com/k4ntz/OC_Atari.