Plotting

 Dekel, Ofer


Online Passive-Aggressive Algorithms

Neural Information Processing Systems

We present a unified view for online classification, regression, and uniclass problems.This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case. A conversion of our main online algorithm to the setting of batch learning is also discussed. Theend result is new algorithms and accompanying loss bounds for the hinge-loss.


Multiclass Learning by Probabilistic Embeddings

Neural Information Processing Systems

We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization of error correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.


Multiclass Learning by Probabilistic Embeddings

Neural Information Processing Systems

We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization of error correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.


Multiclass Learning by Probabilistic Embeddings

Neural Information Processing Systems

We describe a new algorithmic framework for learning multiclass categorization problems.In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization oferror correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems.