Plotting

 Dehak, Najim


Demographic Attributes Prediction from Speech Using WavLM Embeddings

arXiv.org Artificial Intelligence

This paper introduces a general classifier based on WavLM features, to infer demographic characteristics, such as age, gender, native language, education, and country, from speech. Demographic feature prediction plays a crucial role in applications like language learning, accessibility, and digital forensics, enabling more personalized and inclusive technologies. Leveraging pretrained models for embedding extraction, the proposed framework identifies key acoustic and linguistic fea-tures associated with demographic attributes, achieving a Mean Absolute Error (MAE) of 4.94 for age prediction and over 99.81% accuracy for gender classification across various datasets. Our system improves upon existing models by up to relative 30% in MAE and up to relative 10% in accuracy and F1 scores across tasks, leveraging a diverse range of datasets and large pretrained models to ensure robustness and generalizability. This study offers new insights into speaker diversity and provides a strong foundation for future research in speech-based demographic profiling.


Detecting Neurodegenerative Diseases using Frame-Level Handwriting Embeddings

arXiv.org Artificial Intelligence

In this study, we explored the use of spectrograms to represent handwriting signals for assessing neurodegenerative diseases, including 42 healthy controls (CTL), 35 subjects with Parkinson's Disease (PD), 21 with Alzheimer's Disease (AD), and 15 with Parkinson's Disease Mimics (PDM). We applied CNN and CNN-BLSTM models for binary classification using both multi-channel fixed-size and frame-based spectrograms. Our results showed that handwriting tasks and spectrogram channel combinations significantly impacted classification performance. The highest F1-score (89.8%) was achieved for AD vs. CTL, while PD vs. CTL reached 74.5%, and PD vs. PDM scored 77.97%. CNN consistently outperformed CNN-BLSTM. Different sliding window lengths were tested for constructing frame-based spectrograms. A 1-second window worked best for AD, longer windows improved PD classification, and window length had little effect on PD vs. PDM.


CA-SSLR: Condition-Aware Self-Supervised Learning Representation for Generalized Speech Processing

arXiv.org Artificial Intelligence

We introduce Condition-Aware Self-Supervised Learning Representation (CA-SSLR), a generalist conditioning model broadly applicable to various speech-processing tasks. Compared to standard fine-tuning methods that optimize for downstream models, CA-SSLR integrates language and speaker embeddings from earlier layers, making the SSL model aware of the current language and speaker context. This approach reduces the reliance on input audio features while preserving the integrity of the base SSLR. CA-SSLR improves the model's capabilities and demonstrates its generality on unseen tasks with minimal task-specific tuning. Our method employs linear modulation to dynamically adjust internal representations, enabling fine-grained adaptability without significantly altering the original model behavior. Experiments show that CA-SSLR reduces the number of trainable parameters, mitigates overfitting, and excels in under-resourced and unseen tasks. Specifically, CA-SSLR achieves a 10% relative reduction in LID errors, a 37% improvement in ASR CER on the ML-SUPERB benchmark, and a 27% decrease in SV EER on VoxCeleb-1, demonstrating its effectiveness.


Time Scale Network: A Shallow Neural Network For Time Series Data

arXiv.org Artificial Intelligence

Time series data is often composed of information at multiple time scales, particularly in biomedical data. While numerous deep learning strategies exist to capture this information, many make networks larger, require more data, are more demanding to compute, and are difficult to interpret. This limits their usefulness in real-world applications facing even modest computational or data constraints and can further complicate their translation into practice. We present a minimal, computationally efficient Time Scale Network combining the translation and dilation sequence used in discrete wavelet transforms with traditional convolutional neural networks and back-propagation. The network simultaneously learns features at many time scales for sequence classification with significantly reduced parameters and operations. We demonstrate advantages in Atrial Dysfunction detection including: superior accuracy-per-parameter and accuracy-per-operation, fast training and inference speeds, and visualization and interpretation of learned patterns in atrial dysfunction detection on ECG signals. We also demonstrate impressive performance in seizure prediction using EEG signals. Our network isolated a few time scales that could be strategically selected to achieve 90.9% accuracy using only 1,133 active parameters and consistently converged on pulsatile waveform shapes. This method does not rest on any constraints or assumptions regarding signal content and could be leveraged in any area of time series analysis dealing with signals containing features at many time scales.


Stabilized training of joint energy-based models and their practical applications

arXiv.org Artificial Intelligence

The recently proposed Joint Energy-based Model (JEM) interprets discriminatively trained classifier $p(y|x)$ as an energy model, which is also trained as a generative model describing the distribution of the input observations $p(x)$. The JEM training relies on "positive examples" (i.e. examples from the training data set) as well as on "negative examples", which are samples from the modeled distribution $p(x)$ generated by means of Stochastic Gradient Langevin Dynamics (SGLD). Unfortunately, SGLD often fails to deliver negative samples of sufficient quality during the standard JEM training, which causes a very unbalanced contribution from the positive and negative examples when calculating gradients for JEM updates. As a consequence, the standard JEM training is quite unstable requiring careful tuning of hyper-parameters and frequent restarts when the training starts diverging. This makes it difficult to apply JEM to different neural network architectures, modalities, and tasks. In this work, we propose a training procedure that stabilizes SGLD-based JEM training (ST-JEM) by balancing the contribution from the positive and negative examples. We also propose to add an additional "regularization" term to the training objective -- MI between the input observations $x$ and output labels $y$ -- which encourages the JEM classifier to make more certain decisions about output labels. We demonstrate the effectiveness of our approach on the CIFAR10 and CIFAR100 tasks. We also consider the task of classifying phonemes in a speech signal, for which we were not able to train JEM without the proposed stabilization. We show that a convincing speech can be generated from the trained model. Alternatively, corrupted speech can be de-noised by bringing it closer to the modeled speech distribution using a few SGLD iterations. We also propose and discuss additional applications of the trained model.


Textual Data Augmentation for Arabic-English Code-Switching Speech Recognition

arXiv.org Artificial Intelligence

The pervasiveness of intra-utterance code-switching (CS) in spoken content requires that speech recognition (ASR) systems handle mixed language. Designing a CS-ASR system has many challenges, mainly due to data scarcity, grammatical structure complexity, and domain mismatch. The most common method for addressing CS is to train an ASR system with the available transcribed CS speech, along with monolingual data. In this work, we propose a zero-shot learning methodology for CS-ASR by augmenting the monolingual data with artificially generating CS text. We based our approach on random lexical replacements and Equivalence Constraint (EC) while exploiting aligned translation pairs to generate random and grammatically valid CS content. Our empirical results show a 65.5% relative reduction in language model perplexity, and 7.7% in ASR WER on two ecologically valid CS test sets. The human evaluation of the generated text using EC suggests that more than 80% is of adequate quality.


Hierarchical Transformers for Long Document Classification

arXiv.org Machine Learning

BERT, which stands for Bidirectional Encoder Representations from Transformers, is a recently introduced language representation model based upon the transfer learning paradigm. We extend its fine-tuning procedure to address one of its major limitations - applicability to inputs longer than a few hundred words, such as transcripts of human call conversations. Our method is conceptually simple. We segment the input into smaller chunks and feed each of them into the base model. Then, we propagate each output through a single recurrent layer, or another transformer, followed by a softmax activation. We obtain the final classification decision after the last segment has been consumed. We show that both BERT extensions are quick to fine-tune and converge after as little as 1 epoch of training on a small, domain-specific data set. We successfully apply them in three different tasks involving customer call satisfaction prediction and topic classification, and obtain a significant improvement over the baseline models in two of them.


Attentive Filtering Networks for Audio Replay Attack Detection

arXiv.org Machine Learning

ABSTRACT An attacker may use a variety of techniques to fool an automatic speaker verification system into accepting them as a genuine user. Anti-spoofing methods meanwhile aim to make the system robust against such attacks. The ASVspoof 2017 Challenge focused specifically on replay attacks, with the intention of measuring the limits of replay attack detection as well as developing countermeasures against them. In this work, we propose our replay attacks detection system - Attentive Filtering Network, which is composed of an attention-based filtering mechanism that enhances feature representations in both the frequency and time domains, and a ResNet-based classifier. We show that the network enables us to visualize the automatically acquired feature representations that are helpful for spoofing detection. Index Terms-- ASVspoof, Anti-Spoofing, Spoofing Attack, Replay Attacks, Automatic Speaker Verification 1. INTRODUCTION Automatic speaker verification (ASV) systems have become increasingly widespread in recent years with the advent of voice assistant and smart home devices.


A Unified Deep Neural Network for Speaker and Language Recognition

arXiv.org Machine Learning

Learned feature representations and sub-phoneme posteriors from Deep Neural Networks (DNNs) have been used separately to produce significant performance gains for speaker and language recognition tasks. In this work we show how these gains are possible using a single DNN for both speaker and language recognition. The unified DNN approach is shown to yield substantial performance improvements on the the 2013 Domain Adaptation Challenge speaker recognition task (55% reduction in EER for the out-of-domain condition) and on the NIST 2011 Language Recognition Evaluation (48% reduction in EER for the 30s test condition).