Not enough data to create a plot.
Try a different view from the menu above.
De Vleeschouwer, Christophe
Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis
Englebert, Alexandre, Collin, Anne-Sophie, Cornu, Olivier, De Vleeschouwer, Christophe
In the medical domain, particularly in radiography, large-scale datasets are generally limited to English reports and to specific body areas. To the best of our knowledge, the only large publicly available radiography-report dataset is MIMIC-CXR[1], containing 377,110 Chest Xray images and their corresponding free-text reports in English. This raises a significant challenge when applying the models derived from those data to images other than Chest Xrays. Moreover, privacy regulations such as the General Data Protection Regulation (GDPR)[2] impose strict limitations on the distribution and sharing of medical databases containing sensitive patient information. To address this limitation, one viable approach would be to utilize local data available within a given hospital or healthcare institution. Hospitals typically maintain their own databases of medical images and associated reports, which are collected as part of routine clinical practice. While these local datasets may not be as extensive as publicly available datasets, they still contain valuable information that can be leveraged for training and evaluating machine learning models. Therefore, in this paper, we propose to explore vision-language pretraining using bone X-rays paired with French reports sourced from a single university hospital department. Specifically, our work aims at aligning deep embedding representations of Bone X-Rays and French Reports for solving image-based medical tasks with limited annotation.
Multi-Stream Cellular Test-Time Adaptation of Real-Time Models Evolving in Dynamic Environments
Gérin, Benoît, Halin, Anaïs, Cioppa, Anthony, Henry, Maxim, Ghanem, Bernard, Macq, Benoît, De Vleeschouwer, Christophe, Van Droogenbroeck, Marc
In the era of the Internet of Things (IoT), objects connect through a dynamic network, empowered by technologies like 5G, enabling real-time data sharing. However, smart objects, notably autonomous vehicles, face challenges in critical local computations due to limited resources. Lightweight AI models offer a solution but struggle with diverse data distributions. To address this limitation, we propose a novel Multi-Stream Cellular Test-Time Adaptation (MSC-TTA) setup where models adapt on the fly to a dynamic environment divided into cells. Then, we propose a real-time adaptive student-teacher method that leverages the multiple streams available in each cell to quickly adapt to changing data distributions. We validate our methodology in the context of autonomous vehicles navigating across cells defined based on location and weather conditions. To facilitate future benchmarking, we release a new multi-stream large-scale synthetic semantic segmentation dataset, called DADE, and show that our multi-stream approach outperforms a single-stream baseline. We believe that our work will open research opportunities in the IoT and 5G eras, offering solutions for real-time model adaptation.
SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap
Somers, Vladimir, Joos, Victor, Cioppa, Anthony, Giancola, Silvio, Ghasemzadeh, Seyed Abolfazl, Magera, Floriane, Standaert, Baptiste, Mansourian, Amir Mohammad, Zhou, Xin, Kasaei, Shohreh, Ghanem, Bernard, Alahi, Alexandre, Van Droogenbroeck, Marc, De Vleeschouwer, Christophe
Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.
Multi-task Learning for Joint Re-identification, Team Affiliation, and Role Classification for Sports Visual Tracking
Mansourian, Amir M., Somers, Vladimir, De Vleeschouwer, Christophe, Kasaei, Shohreh
Effective tracking and re-identification of players is essential for analyzing soccer videos. But, it is a challenging task due to the non-linear motion of players, the similarity in appearance of players from the same team, and frequent occlusions. Therefore, the ability to extract meaningful embeddings to represent players is crucial in developing an effective tracking and re-identification system. In this paper, a multi-purpose part-based person representation method, called PRTreID, is proposed that performs three tasks of role classification, team affiliation, and re-identification, simultaneously. In contrast to available literature, a single network is trained with multi-task supervision to solve all three tasks, jointly. The proposed joint method is computationally efficient due to the shared backbone. Also, the multi-task learning leads to richer and more discriminative representations, as demonstrated by both quantitative and qualitative results. To demonstrate the effectiveness of PRTreID, it is integrated with a state-of-the-art tracking method, using a part-based post-processing module to handle long-term tracking. The proposed tracking method outperforms all existing tracking methods on the challenging SoccerNet tracking dataset.
SoccerNet 2023 Challenges Results
Cioppa, Anthony, Giancola, Silvio, Somers, Vladimir, Magera, Floriane, Zhou, Xin, Mkhallati, Hassan, Deliège, Adrien, Held, Jan, Hinojosa, Carlos, Mansourian, Amir M., Miralles, Pierre, Barnich, Olivier, De Vleeschouwer, Christophe, Alahi, Alexandre, Ghanem, Bernard, Van Droogenbroeck, Marc, Kamal, Abdullah, Maglo, Adrien, Clapés, Albert, Abdelaziz, Amr, Xarles, Artur, Orcesi, Astrid, Scott, Atom, Liu, Bin, Lim, Byoungkwon, Chen, Chen, Deuser, Fabian, Yan, Feng, Yu, Fufu, Shitrit, Gal, Wang, Guanshuo, Choi, Gyusik, Kim, Hankyul, Guo, Hao, Fahrudin, Hasby, Koguchi, Hidenari, Ardö, Håkan, Salah, Ibrahim, Yerushalmy, Ido, Muhammad, Iftikar, Uchida, Ikuma, Be'ery, Ishay, Rabarisoa, Jaonary, Lee, Jeongae, Fu, Jiajun, Yin, Jianqin, Xu, Jinghang, Nang, Jongho, Denize, Julien, Li, Junjie, Zhang, Junpei, Kim, Juntae, Synowiec, Kamil, Kobayashi, Kenji, Zhang, Kexin, Habel, Konrad, Nakajima, Kota, Jiao, Licheng, Ma, Lin, Wang, Lizhi, Wang, Luping, Li, Menglong, Zhou, Mengying, Nasr, Mohamed, Abdelwahed, Mohamed, Liashuha, Mykola, Falaleev, Nikolay, Oswald, Norbert, Jia, Qiong, Pham, Quoc-Cuong, Song, Ran, Hérault, Romain, Peng, Rui, Chen, Ruilong, Liu, Ruixuan, Baikulov, Ruslan, Fukushima, Ryuto, Escalera, Sergio, Lee, Seungcheon, Chen, Shimin, Ding, Shouhong, Someya, Taiga, Moeslund, Thomas B., Li, Tianjiao, Shen, Wei, Zhang, Wei, Li, Wei, Dai, Wei, Luo, Weixin, Zhao, Wending, Zhang, Wenjie, Yang, Xinquan, Ma, Yanbiao, Joo, Yeeun, Zeng, Yingsen, Gan, Yiyang, Zhu, Yongqiang, Zhong, Yujie, Ruan, Zheng, Li, Zhiheng, Huang, Zhijian, Meng, Ziyu
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
An Experimental Investigation into the Evaluation of Explainability Methods
Stassin, Sédrick, Englebert, Alexandre, Nanfack, Géraldin, Albert, Julien, Versbraegen, Nassim, Peiffer, Gilles, Doh, Miriam, Riche, Nicolas, Frenay, Benoît, De Vleeschouwer, Christophe
EXplainable Artificial Intelligence (XAI) aims to help users to grasp the reasoning behind the predictions of an Artificial Intelligence (AI) system. Many XAI approaches have emerged in recent years. Consequently, a subfield related to the evaluation of XAI methods has gained considerable attention, with the aim to determine which methods provide the best explanation using various approaches and criteria. However, the literature lacks a comparison of the evaluation metrics themselves, that one can use to evaluate XAI methods. This work aims to fill this gap by comparing 14 different metrics when applied to nine state-of-the-art XAI methods and three dummy methods (e.g., random saliency maps) used as references. Experimental results show which of these metrics produces highly correlated results, indicating potential redundancy. We also demonstrate the significant impact of varying the baseline hyperparameter on the evaluation metric values. Finally, we use dummy methods to assess the reliability of metrics in terms of ranking, pointing out their limitations.
Are Straight-Through gradients and Soft-Thresholding all you need for Sparse Training?
Vanderschueren, Antoine, De Vleeschouwer, Christophe
Turning the weights to zero when training a neural network helps in reducing the computational complexity at inference. To progressively increase the sparsity ratio in the network without causing sharp weight discontinuities during training, our work combines soft-thresholding and straight-through gradient estimation to update the raw, i.e. non-thresholded, version of zeroed weights. Our method, named ST-3 for straight-through/soft-thresholding/sparse-training, obtains SoA results, both in terms of accuracy/sparsity and accuracy/FLOPS trade-offs, when progressively increasing the sparsity ratio in a single training cycle. In particular, despite its simplicity, ST-3 favorably compares to the most recent methods, adopting differentiable formulations or bio-inspired neuroregeneration principles. This suggests that the key ingredients for effective sparsification primarily lie in the ability to give the weights the freedom to evolve smoothly across the zero state while progressively increasing the sparsity ratio. Source code and weights available at https://github.com/vanderschuea/stthree
1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results
Kiefer, Benjamin, Kristan, Matej, Perš, Janez, Žust, Lojze, Poiesi, Fabio, Andrade, Fabio Augusto de Alcantara, Bernardino, Alexandre, Dawkins, Matthew, Raitoharju, Jenni, Quan, Yitong, Atmaca, Adem, Höfer, Timon, Zhang, Qiming, Xu, Yufei, Zhang, Jing, Tao, Dacheng, Sommer, Lars, Spraul, Raphael, Zhao, Hangyue, Zhang, Hongpu, Zhao, Yanyun, Augustin, Jan Lukas, Jeon, Eui-ik, Lee, Impyeong, Zedda, Luca, Loddo, Andrea, Di Ruberto, Cecilia, Verma, Sagar, Gupta, Siddharth, Muralidhara, Shishir, Hegde, Niharika, Xing, Daitao, Evangeliou, Nikolaos, Tzes, Anthony, Bartl, Vojtěch, Špaňhel, Jakub, Herout, Adam, Bhowmik, Neelanjan, Breckon, Toby P., Kundargi, Shivanand, Anvekar, Tejas, Desai, Chaitra, Tabib, Ramesh Ashok, Mudengudi, Uma, Vats, Arpita, Song, Yang, Liu, Delong, Li, Yonglin, Li, Shuman, Tan, Chenhao, Lan, Long, Somers, Vladimir, De Vleeschouwer, Christophe, Alahi, Alexandre, Huang, Hsiang-Wei, Yang, Cheng-Yen, Hwang, Jenq-Neng, Kim, Pyong-Kun, Kim, Kwangju, Lee, Kyoungoh, Jiang, Shuai, Li, Haiwen, Ziqiang, Zheng, Vu, Tuan-Anh, Nguyen-Truong, Hai, Yeung, Sai-Kit, Jia, Zhuang, Yang, Sophia, Hsu, Chih-Chung, Hou, Xiu-Yu, Jhang, Yu-An, Yang, Simon, Yang, Mau-Tsuen
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
Intraclass clustering: an implicit learning ability that regularizes DNNs
Simon, Carbonnelle, De Vleeschouwer, Christophe
Several works have shown that the regularization mechanisms underlying deep neural networks' generalization performances are still poorly understood. In this paper, we hypothesize that deep neural networks are regularized through their ability to extract meaningful clusters among the samples of a class. This constitutes an implicit form of regularization, as no explicit training mechanisms or supervision target such behaviour. To support our hypothesis, we design four different measures of intraclass clustering, based on the neuron- and layer-level representations of the training data. We then show that these measures constitute accurate predictors of generalization performance across variations of a large set of hyperparameters (learning rate, batch size, optimizer, weight decay, dropout rate, data augmentation, network depth and width).
On layer-level control of DNN training and its impact on generalization
Carbonnelle, Simon, De Vleeschouwer, Christophe
The generalization ability of a neural network depends on the optimization procedure used for training it. For practitioners and theoreticians, it is essential to identify which properties of the optimization procedure influence generalization. In this paper, we observe that prioritizing the training of distinct layers in a network significantly impacts its generalization ability, sometimes causing differences of up to 30% in test accuracy. In order to better monitor and control such prioritization, we propose to define layer-level training speed as the rotation rate of the layer's weight vector (denoted by layer rotation rate hereafter), and develop Layca, an optimization algorithm that enables direct control over it through each layer's learning rate parameter, without being affected by gradient propagation phenomena (e.g. vanishing gradients). We show that controlling layer rotation rates enables Layca to significantly outperform SGD with the same amount of learning rate tuning on three different tasks (up to 10% test error improvement). Furthermore, we provide experiments that suggest that several intriguing observations related to the training of deep models, i.e. the presence of plateaus in learning curves, the impact of weight decay, and the bad generalization properties of adaptive gradient methods, are all due to specific configurations of layer rotation rates. Overall, our work reveals that layer rotation rates are an important factor for generalization, and that monitoring it should be a key component of any deep learning experiment.