Plotting

 De, Abir


Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental Design Approach

arXiv.org Artificial Intelligence

The networked opinion diffusion in online social networks (OSN) is often governed by the two genres of opinions - endogenous opinions that are driven by the influence of social contacts among users, and exogenous opinions which are formed by external effects like news, feeds etc. Accurate demarcation of endogenous and exogenous messages offers an important cue to opinion modeling, thereby enhancing its predictive performance. In this paper, we design a suite of unsupervised classification methods based on experimental design approaches, in which, we aim to select the subsets of events which minimize different measures of mean estimation error. In more detail, we first show that these subset selection tasks are NP-Hard. Then we show that the associated objective functions are weakly submodular, which allows us to cast efficient approximation algorithms with guarantees. Finally, we validate the efficacy of our proposal on various real-world datasets crawled from Twitter as well as diverse synthetic datasets. Our experiments range from validating prediction performance on unsanitized and sanitized events to checking the effect of selecting optimal subsets of various sizes. Through various experiments, we have found that our method offers a significant improvement in accuracy in terms of opinion forecasting, against several competitors.


Classification Under Human Assistance

arXiv.org Machine Learning

Most supervised learning models are trained for full automation. However, their predictions are sometimes worse than those by human experts on some specific instances. Motivated by this empirical observation, our goal is to design classifiers that are optimized to operate under different automation levels. More specifically, we focus on convex margin-based classifiers and first show that the problem is NP-hard. Then, we further show that, for support vector machines, the corresponding objective function can be expressed as the difference of two functions f = g - c, where g is monotone, non-negative and {\gamma}-weakly submodular, and c is non-negative and modular. This representation allows a recently introduced deterministic greedy algorithm, as well as a more efficient randomized variant of the algorithm, to enjoy approximation guarantees at solving the problem. Experiments on synthetic and real-world data from several applications in medical diagnosis illustrate our theoretical findings and demonstrate that, under human assistance, supervised learning models trained to operate under different automation levels can outperform those trained for full automation as well as humans operating alone.


Can A User Anticipate What Her Followers Want?

arXiv.org Machine Learning

Whenever a social media user decides to share a story, she is typically pleased to receive likes, comments, shares, or, more generally, feedback from her followers. As a result, she may feel compelled to use the feedback she receives to (re-)estimate her followers' preferences and decides which stories to share next to receive more (positive) feedback. Under which conditions can she succeed? In this work, we first look into this problem from a theoretical perspective and then provide a set of practical algorithms to identify and characterize such behavior in social media. More specifically, we address the above problem from the viewpoint of sequential decision making and utility maximization. For a wide variety of utility functions, we first show that, to succeed, a user needs to actively trade off exploitation-- sharing stories which lead to more (positive) feedback--and exploration-- sharing stories to learn about her followers' preferences. However, exploration is not necessary if a user utilizes the feedback her followers provide to other users in addition to the feedback she receives. Then, we develop a utility estimation framework for observation data, which relies on statistical hypothesis testing to determine whether a user utilizes the feedback she receives from each of her followers to decide what to post next. Experiments on synthetic data illustrate our theoretical findings and show that our estimation framework is able to accurately recover users' underlying utility functions. Experiments on several real datasets gathered from Twitter and Reddit reveal that up to 82% (43%) of the Twitter (Reddit) users in our datasets do use the feedback they receive to decide what to post next.


Regression Under Human Assistance

arXiv.org Machine Learning

Decisions are increasingly taken by both humans and machine learning models. However, machine learning models are currently trained for full automation-they are not aware that some of the decisions may still be taken by humans. In this paper, we take a first step towards making machine learning models aware of the presence of human decision-makers. More specifically, we first introduce the problem of ridge regression under human assistance and show that it is NP-hard. Then, we derive an alternative representation of the corresponding objective function as a difference of nondecreasing submodular functions. Building on this representation, we further show that the objective is nondecreasing and satisfies \xi-submodularity, a recently introduced notion of approximate submodularity. These properties allow simple and efficient greedy algorithm to enjoy approximation guarantees at solving the problem. Experiments on synthetic and real-world data from two important applications-medical diagnoses and content moderation-demonstrate that the greedy algorithm beats several competitive baselines.


Consequential Ranking Algorithms and Long-term Welfare

arXiv.org Machine Learning

Ranking models are typically designed to provide rankings that optimize some measure of immediate utility to the users. As a result, they have been unable to anticipate an increasing number of undesirable long-term consequences of their proposed rankings, from fueling the spread of misinformation and increasing polarization to degrading social discourse. Can we design ranking models that understand the consequences of their proposed rankings and, more importantly, are able to avoid the undesirable ones? In this paper, we first introduce a joint representation of rankings and user dynamics using Markov decision processes. Then, we show that this representation greatly simplifies the construction of consequential ranking models that trade off the immediate utility and the long-term welfare. In particular, we can obtain optimal consequential rankings just by applying weighted sampling on the rankings provided by models that maximize measures of immediate utility. However, in practice, such a strategy may be inefficient and impractical, specially in high dimensional scenarios. To overcome this, we introduce an efficient gradient-based algorithm to learn parameterized consequential ranking models that effectively approximate optimal ones. We showcase our methodology using synthetic and real data gathered from Reddit and show that ranking models derived using our methodology provide ranks that may mitigate the spread of misinformation and improve the civility of online discussions.


Deep Reinforcement Learning of Marked Temporal Point Processes

Neural Information Processing Systems

Can we design online interventions that will help humans achieve certain goals in such asynchronous setting? In this paper, we address the above problem from the perspective of deep reinforcement learning of marked temporal point processes, where both the actions taken by an agent and the feedback it receives from the environment are asynchronous stochastic discrete events characterized using marked temporal point processes. In doing so, we define the agent's policy using the intensity and mark distribution of the corresponding process and then derive a flexible policy gradient method, which embeds the agent's actions and the feedback it receives into real-valued vectors using deep recurrent neural networks. Our method does not make any assumptions on the functional form of the intensity and mark distribution of the feedback and it allows for arbitrarily complex reward functions. We apply our methodology to two different applications in personalized teaching and viral marketing and, using data gathered from Duolingo and Twitter, we show that it may be able to find interventions to help learners and marketers achieve their goals more effectively than alternatives.


Stochastic Optimal Control of Epidemic Processes in Networks

arXiv.org Machine Learning

We approach the development of models and control strategies of susceptible-infected-susceptible (SIS) epidemic processes from the perspective of marked temporal point processes and stochastic optimal control of stochastic differential equations (SDEs) with jumps. In contrast to previous work, this novel perspective is particularly well-suited to make use of fine-grained data about disease outbreaks, and it lets us overcome the shortcomings of current control strategies. Our control strategy resorts to treatment intensities to determine who to treat and when to do so, to minimize the amount of infected individuals over time. Preliminary experiments with synthetic data show that our control strategy consistently outperforms several alternatives. Looking into the future, we believe our methodology provides a promising step towards the development of practical data-driven control strategies of epidemic processes.


Deep Reinforcement Learning of Marked Temporal Point Processes

arXiv.org Machine Learning

In a wide variety of applications, humans interact with a complex environment by means of asynchronous stochastic discrete events in continuous time. Can we design online interventions that will help humans achieve certain goals in such asynchronous setting? In this paper, we address the above problem from the perspective of deep reinforcement learning of marked temporal point processes, where both the actions taken by an agent and the feedback it receives from the environment are asynchronous stochastic discrete events characterized using marked temporal point processes. In doing so, we define the agent's policy using the intensity and mark distribution of the corresponding process and then derive a flexible policy gradient method, which embeds the agent's actions and the feedback it receives into real-valued vectors using deep recurrent neural networks. Our method does not make any assumptions on the functional form of the intensity and mark distribution of the feedback and it allows for arbitrarily complex reward functions. We apply our methodology to two different applications in personalized teaching and viral marketing and, using data gathered from Duolingo and Twitter, we show that it may be able to find interventions to help learners and marketers achieve their goals more effectively than alternatives.


On the Complexity of Opinions and Online Discussions

arXiv.org Machine Learning

In an increasingly polarized world, demagogues who reduce complexity down to simple arguments based on emotion are gaining in popularity. Are opinions and online discussions falling into demagoguery? In this work, we aim to provide computational tools to investigate this question and, by doing so, explore the nature and complexity of online discussions and their space of opinions, uncovering where each participant lies. More specifically, we present a modeling framework to construct latent representations of opinions in online discussions which are consistent with human judgements, as measured by online voting. If two opinions are close in the resulting latent space of opinions, it is because humans think they are similar. Our modeling framework is theoretically grounded and establishes a surprising connection between opinion and voting models and the sign-rank of a matrix. Moreover, it also provides a set of practical algorithms to both estimate the dimension of the latent space of opinions and infer where opinions expressed by the participants of an online discussion lie in this space. Experiments on a large dataset from Yahoo! News, Yahoo! Finance, Yahoo! Sports, and the Newsroom app suggest that unidimensional opinion models may be often unable to accurately represent online discussions, provide insights into human judgements and opinions, and show that our framework is able to circumvent language nuances such as sarcasm or humor by relying on human judgements instead of textual analysis.


Steering Social Activity: A Stochastic Optimal Control Point Of View

arXiv.org Machine Learning

User engagement in online social networking depends critically on the level of social activity in the corresponding platform--the number of online actions, such as posts, shares or replies, taken by their users. Can we design data-driven algorithms to increase social activity? At a user level, such algorithms may increase activity by helping users decide when to take an action to be more likely to be noticed by their peers. At a network level, they may increase activity by incentivizing a few influential users to take more actions, which in turn will trigger additional actions by other users. In this paper, we model social activity using the framework of marked temporal point processes, derive an alternate representation of these processes using stochastic differential equations (SDEs) with jumps and, exploiting this alternate representation, develop two efficient online algorithms with provable guarantees to steer social activity both at a user and at a network level. In doing so, we establish a previously unexplored connection between optimal control of jump SDEs and doubly stochastic marked temporal point processes, which is of independent interest. Finally, we experiment both with synthetic and real data gathered from Twitter and show that our algorithms consistently steer social activity more effectively than the state of the art.