Dayan, Peter
Expected and Unexpected Uncertainty: ACh and NE in the Neocortex
Dayan, Peter, Yu, Angela J.
Experimental and theoretical studies suggest that these different forms of variability play different behavioral, neural and computational roles, and may be reported by different (notably neuromodulatory) systems. Here, we refine ourprevious theory of acetylcholine's role in cortical inference in the (oxymoronic) terms of expected uncertainty, and advocate a theory for norepinephrine in terms of unexpected uncertainty. We suggest that norepinephrine reports the radical divergence of bottom-up inputs from prevailing top-down interpretations, to influence inference and plasticity. We illustrate this proposal using an adaptive factor analysis model.
ACh, Uncertainty, and Cortical Inference
Dayan, Peter, Yu, Angela J.
Acetylcholine (ACh) has been implicated in a wide variety of tasks involving attentional processes and plasticity. Following extensive animal studies, it has previously been suggested that ACh reports on uncertainty and controls hippocampal, cortical and cortico-amygdalar plasticity. We extend this view and consider its effects on cortical representational inference, arguing that ACh controls the balance between bottom-up inference, influenced by input stimuli, and top-down inference, influenced by contextual information. We illustrate our proposal using a hierarchical hidden Markov model.
Motivated Reinforcement Learning
Dayan, Peter
Motivated Reinforcement Learning
Dayan, Peter
Competition between actions is based on the motivating characteristics of their consequent states in this sense. Substantial, careful, experiments reviewed in Dickinson & Balleine,12,13 into the neurobiology and psychology ofmotivation shows that this view is incomplete. In many cases, animals are faced with the choice not between many different actionsat a given state, but rather whether a single response isworth executing at all. Evidence suggests that the motivational process underlying this choice has different psychological andneural properties from that underlying action choice. We describe and model these motivational systems, and consider the way they interact.
ACh, Uncertainty, and Cortical Inference
Dayan, Peter, Yu, Angela J.
Acetylcholine (ACh) has been implicated in a wide variety of tasks involving attentional processes and plasticity. Following extensive animal studies, it has previously been suggested that ACh reports on uncertainty and controls hippocampal, cortical and cortico-amygdalar plasticity. We extend this view and consider its effects on cortical representational inference, arguing that ACh controls the balance between bottom-up inference, influenced by input stimuli, and top-down inference, influenced by contextual information. We illustrate our proposal using a hierarchical hidden Markovmodel.
Dopamine Bonuses
Kakade, Sham, Dayan, Peter
Substantial data support a temporal difference (TO) model of dopamine (OA) neuron activity in which the cells provide a global error signal for reinforcement learning. However, in certain circumstances, OA activity seems anomalous under the TO model, responding to non-rewarding stimuli. We address these anomalies by suggesting that OA cells multiplex information about reward bonuses, including Sutton's exploration bonuses and Ng et al's non-distorting shaping bonuses. We interpret this additional role for OA in terms of the unconditional attentional and psychomotor effects of dopamine, having the computational role of guiding exploration. 1 Introduction Much evidence suggests that dopamine cells in the primate midbrain play an important role in reward and action learning. Electrophysiological studies support a theory that OA cells signal a global prediction error for summed future reward in appetitive conditioning tasks (Montague et al, 1996; Schultz et al, 1997), in the form of a temporal difference prediction error term.
Competition and Arbors in Ocular Dominance
Dayan, Peter
Hebbian and competitive Hebbian algorithms are almost ubiquitous in modeling pattern formation in cortical development. We analyse in theoretical detail a particular model (adapted from Piepenbrock & Obermayer, 1999) for the development of Id stripe-like patterns, which places competitive and interactive cortical influences, and free and restricted initial arborisation onto a common footing. 1 Introduction Cats, many species of monkeys, and humans exibit ocular dominance stripes, which are alternating areas of primary visual cortex devoted to input from (the thalamic relay associated with) just one or the other eye (see Erwin et aI, 1995; Miller, 1996; Swindale, 1996 for reviews of theory and data). These well-known fingerprint patterns have been a seductive target for models of cortical pattern formation because of the mix of competition and cooperation they suggest. A wealth of synaptic adaptation algorithms has been suggested to account for them (and also the concomitant refinement of the topography of the map between the eyes and the cortex), many of which are based on forms of Hebbian learning. Critical issues for the models are the degree of correlation between inputs from the eyes, the nature of the initial arborisation of the axonal inputs, the degree and form of cortical competition, and the nature of synaptic saturation (preventing weights from changing sign or getting too large) and normalisation (allowing cortical and/or thalamic cells to support only a certain total synaptic weight).
Competition and Arbors in Ocular Dominance
Dayan, Peter
Hebbian and competitive Hebbian algorithms are almost ubiquitous in modeling pattern formation in cortical development. We analyse in theoretical detail a particular model (adapted from Piepenbrock & Obermayer, 1999) for the development of Id stripe-like patterns, which places competitive and interactive cortical influences, and free and restricted initial arborisation onto a common footing. 1 Introduction Cats, many species of monkeys, and humans exibit ocular dominance stripes, which are alternating areas of primary visual cortex devoted to input from (the thalamic relay associated with) just one or the other eye (see Erwin et aI, 1995; Miller, 1996; Swindale, 1996 for reviews of theory and data). These well-known fingerprint patterns have been a seductive target for models of cortical pattern formation because of the mix of competition and cooperation they suggest. A wealth of synaptic adaptation algorithms has been suggested to account for them (and also the concomitant refinement of the topography of the map between the eyes and the cortex), many of which are based on forms of Hebbian learning. Critical issues for the models are the degree of correlation between inputs from the eyes, the nature of the initial arborisation of the axonal inputs, the degree and form of cortical competition, and the nature of synaptic saturation (preventing weights from changing sign or getting too large) and normalisation (allowing cortical and/or thalamic cells to support only a certain total synaptic weight).
Explaining Away in Weight Space
Dayan, Peter, Kakade, Sham
Explaining away has mostly been considered in terms of inference of states in belief networks. We show how it can also arise in a Bayesian context in inference about the weights governing relationships such as those between stimuli and reinforcers in conditioning experiments such as bacA, 'Ward blocking. We show how explaining away in weight space can be accounted for using an extension of a Kalman filter model; provide a new approximate way of looking at the Kalman gain matrix as a whitener for the correlation matrix of the observation process; suggest a network implementation of this whitener using an architecture due to Goodall; and show that the resulting model exhibits backward blocking.
Position Variance, Recurrence and Perceptual Learning
Li, Zhaoping, Dayan, Peter
Stimulus arrays are inevitably presented at different positions on the retina in visual tasks, even those that nominally require fixation. In particular, this applies to many perceptual learning tasks. We show that perceptual inference or discrimination in the face of positional variance has a structurally different quality from inference about fixed position stimuli, involving a particular, quadratic, non-linearity rather than a purely linear discrimination. We show the advantage taking this non-linearity into account has for discrimination, and suggest it as a role for recurrent connections in area VI, by demonstrating the superior discrimination performance of a recurrent network. We propose that learning the feedforward and recurrent neural connections for these tasks corresponds to the fast and slow components of learning observed in perceptual learning tasks. 1 Introduction The field of perceptual learning in simple, but high precision, visual tasks (such as vernier acuity tasks) has produced many surprising results whose import for models has yet to be fully felt.