David Silver
Natural Value Approximators: Learning when to Trust Past Estimates
Zhongwen Xu, Joseph Modayil, Hado P. van Hasselt, Andre Barreto, David Silver, Tom Schaul
Neural networks have a smooth initial inductive bias, such that small changes in input do not lead to large changes in output. However, in reinforcement learning domains with sparse rewards, value functions have non-smooth structure with a characteristic asymmetric discontinuity whenever rewards arrive. We propose a mechanism that learns an interpolation between a direct value estimate and a projected value estimate computed from the encountered reward and the previous estimate. This reduces the need to learn about discontinuities, and thus improves the value function approximation. Furthermore, as the interpolation is learned and state-dependent, our method can deal with heterogeneous observability. We demonstrate that this one change leads to significant improvements on multiple Atari games, when applied to the state-of-the-art A3C algorithm.
Imagination-Augmented Agents for Deep Reinforcement Learning
Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, Daan Wierstra
Successor Features for Transfer in Reinforcement Learning
Andre Barreto, Will Dabney, Remi Munos, Jonathan J. Hunt, Tom Schaul, Hado P. van Hasselt, David Silver
Transfer in reinforcement learning refers to the notion that generalization should occur not only within a task but also across tasks. We propose a transfer framework for the scenario where the reward function changes between tasks but the environment's dynamics remain the same. Our approach rests on two key ideas: successor features, a value function representation that decouples the dynamics of the environment from the rewards, and generalized policy improvement, a generalization of dynamic programming's policy improvement operation that considers a set of policies rather than a single one. Put together, the two ideas lead to an approach that integrates seamlessly within the reinforcement learning framework and allows the free exchange of information across tasks. The proposed method also provides performance guarantees for the transferred policy even before any learning has taken place. We derive two theorems that set our approach in firm theoretical ground and present experiments that show that it successfully promotes transfer in practice, significantly outperforming alternative methods in a sequence of navigation tasks and in the control of a simulated robotic arm.