Plotting

 David Kempe


Learning Influence Functions from Incomplete Observations

Neural Information Processing Systems

We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.


A General Framework for Robust Interactive Learning

Neural Information Processing Systems

We propose a general framework for interactively learning models, such as (binary or non-binary) classifiers, orderings/rankings of items, or clusterings of data points. Our framework is based on a generalization of Angluin's equivalence query model and Littlestone's online learning model: in each iteration, the algorithm proposes a model, and the user either accepts it or reveals a specific mistake in the proposal.


A General Framework for Robust Interactive Learning

Neural Information Processing Systems

We propose a general framework for interactively learning models, such as (binary or non-binary) classifiers, orderings/rankings of items, or clusterings of data points. Our framework is based on a generalization of Angluin's equivalence query model and Littlestone's online learning model: in each iteration, the algorithm proposes a model, and the user either accepts it or reveals a specific mistake in the proposal.