Plotting

 Daume, Hal


The Infinite Hierarchical Factor Regression Model

Neural Information Processing Systems

We propose a nonparametric Bayesian factor regression model that accounts for uncertainty in the number of factors, and the relationship between factors. To accomplish this, we propose a sparse variant of the Indian Buffet Process and couple this with a hierarchical model over factors, based on Kingman's coalescent. We apply this model to two problems (factor analysis and factor regression) in gene-expression data analysis.



Multi-Label Prediction via Sparse Infinite CCA

Neural Information Processing Systems

Canonical Correlation Analysis (CCA) is a useful technique for modeling dependencies between two (or more) sets of variables. Building upon the recently suggested probabilistic interpretation of CCA, we propose a nonparametric, fully Bayesian framework that can automatically select the number of correlation components, and effectively capture the sparsity underlying the projections. In addition, given (partially) labeled data, our algorithm can also be used as a (semi)supervised dimensionality reduction technique, and can be applied to learn useful predictive features in the context of learning a set of related tasks. Experimental results demonstrate the efficacy of the proposed approach for both CCA as a stand-alone problem, and when applied to multi-label prediction.