Goto

Collaborating Authors

 Daskalakis, Constantinos


Online Learning and Solving Infinite Games with an ERM Oracle

arXiv.org Artificial Intelligence

While ERM suffices to attain near-optimal generalization error in the stochastic learning setting, this is not known to be the case in the online learning setting, where algorithms for general concept classes rely on computationally inefficient oracles such as the Standard Optimal Algorithm (SOA). In this work, we propose an algorithm for online binary classification setting that relies solely on ERM oracle calls, and show that it has finite regret in the realizable setting and sublinearly growing regret in the agnostic setting. We bound the regret in terms of the Littlestone and threshold dimensions of the underlying concept class. We obtain similar results for nonparametric games, where the ERM oracle can be interpreted as a best response oracle, finding the best response of a player to a given history of play of the other players. In this setting, we provide learning algorithms that only rely on best response oracles and converge to approximate-minimax equilibria in two-player zero-sum games and approximate coarse correlated equilibria in multi-player general-sum games, as long as the game has a bounded fat-threshold dimension. Our algorithms apply to both binary-valued and real-valued games and can be viewed as providing justification for the wide use of double oracle and multiple oracle algorithms in the practice of solving large games.


Learning and Testing Latent-Tree Ising Models Efficiently

arXiv.org Artificial Intelligence

We provide time- and sample-efficient algorithms for learning and testing latent-tree Ising models, i.e. Ising models that may only be observed at their leaf nodes. On the learning side, we obtain efficient algorithms for learning a tree-structured Ising model whose leaf node distribution is close in Total Variation Distance, improving on the results of prior work. On the testing side, we provide an efficient algorithm with fewer samples for testing whether two latent-tree Ising models have leaf-node distributions that are close or far in Total Variation distance. We obtain our algorithms by showing novel localization results for the total variation distance between the leaf-node distributions of tree-structured Ising models, in terms of their marginals on pairs of leaves.


Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be Consistent

arXiv.org Artificial Intelligence

Imperfect score-matching leads to a shift between the training and the sampling distribution of diffusion models. Due to the recursive nature of the generation process, errors in previous steps yield sampling iterates that drift away from the training distribution. Yet, the standard training objective via Denoising Score Matching (DSM) is only designed to optimize over non-drifted data. To train on drifted data, we propose to enforce a \emph{consistency} property which states that predictions of the model on its own generated data are consistent across time. Theoretically, we show that if the score is learned perfectly on some non-drifted points (via DSM) and if the consistency property is enforced everywhere, then the score is learned accurately everywhere. Empirically we show that our novel training objective yields state-of-the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in AFHQ and FFHQ. We open-source our code and models: https://github.com/giannisdaras/cdm


SDYN-GANs: Adversarial Learning Methods for Multistep Generative Models for General Order Stochastic Dynamics

arXiv.org Artificial Intelligence

We introduce adversarial learning methods for data-driven generative modeling of the dynamics of $n^{th}$-order stochastic systems. Our approach builds on Generative Adversarial Networks (GANs) with generative model classes based on stable $m$-step stochastic numerical integrators. We introduce different formulations and training methods for learning models of stochastic dynamics based on observation of trajectory samples. We develop approaches using discriminators based on Maximum Mean Discrepancy (MMD), training protocols using conditional and marginal distributions, and methods for learning dynamic responses over different time-scales. We show how our approaches can be used for modeling physical systems to learn force-laws, damping coefficients, and noise-related parameters. The adversarial learning approaches provide methods for obtaining stable generative models for dynamic tasks including long-time prediction and developing simulations for stochastic systems.


Near-Optimal No-Regret Learning in General Games

arXiv.org Artificial Intelligence

We show that Optimistic Hedge -- a common variant of multiplicative-weights-updates with recency bias -- attains ${\rm poly}(\log T)$ regret in multi-player general-sum games. In particular, when every player of the game uses Optimistic Hedge to iteratively update her strategy in response to the history of play so far, then after $T$ rounds of interaction, each player experiences total regret that is ${\rm poly}(\log T)$. Our bound improves, exponentially, the $O({T}^{1/2})$ regret attainable by standard no-regret learners in games, the $O(T^{1/4})$ regret attainable by no-regret learners with recency bias (Syrgkanis et al., 2015), and the ${O}(T^{1/6})$ bound that was recently shown for Optimistic Hedge in the special case of two-player games (Chen & Pen, 2020). A corollary of our bound is that Optimistic Hedge converges to coarse correlated equilibrium in general games at a rate of $\tilde{O}\left(\frac 1T\right)$.


Near-Optimal No-Regret Learning for Correlated Equilibria in Multi-Player General-Sum Games

arXiv.org Artificial Intelligence

Recently, Daskalakis, Fishelson, and Golowich (DFG) (NeurIPS`21) showed that if all agents in a multi-player general-sum normal-form game employ Optimistic Multiplicative Weights Update (OMWU), the external regret of every player is $O(\textrm{polylog}(T))$ after $T$ repetitions of the game. We extend their result from external regret to internal regret and swap regret, thereby establishing uncoupled learning dynamics that converge to an approximate correlated equilibrium at the rate of $\tilde{O}(T^{-1})$. This substantially improves over the prior best rate of convergence for correlated equilibria of $O(T^{-3/4})$ due to Chen and Peng (NeurIPS`20), and it is optimal -- within the no-regret framework -- up to polylogarithmic factors in $T$. To obtain these results, we develop new techniques for establishing higher-order smoothness for learning dynamics involving fixed point operations. Specifically, we establish that the no-internal-regret learning dynamics of Stoltz and Lugosi (Mach Learn`05) are equivalently simulated by no-external-regret dynamics on a combinatorial space. This allows us to trade the computation of the stationary distribution on a polynomial-sized Markov chain for a (much more well-behaved) linear transformation on an exponential-sized set, enabling us to leverage similar techniques as DFG to near-optimally bound the internal regret. Moreover, we establish an $O(\textrm{polylog}(T))$ no-swap-regret bound for the classic algorithm of Blum and Mansour (BM) (JMLR`07). We do so by introducing a technique based on the Cauchy Integral Formula that circumvents the more limited combinatorial arguments of DFG. In addition to shedding clarity on the near-optimal regret guarantees of BM, our arguments provide insights into the various ways in which the techniques by DFG can be extended and leveraged in the analysis of more involved learning algorithms.


What Makes A Good Fisherman? Linear Regression under Self-Selection Bias

arXiv.org Artificial Intelligence

In the classical setting of self-selection, the goal is to learn $k$ models, simultaneously from observations $(x^{(i)}, y^{(i)})$ where $y^{(i)}$ is the output of one of $k$ underlying models on input $x^{(i)}$. In contrast to mixture models, where we observe the output of a randomly selected model, here the observed model depends on the outputs themselves, and is determined by some known selection criterion. For example, we might observe the highest output, the smallest output, or the median output of the $k$ models. In known-index self-selection, the identity of the observed model output is observable; in unknown-index self-selection, it is not. Self-selection has a long history in Econometrics and applications in various theoretical and applied fields, including treatment effect estimation, imitation learning, learning from strategically reported data, and learning from markets at disequilibrium. In this work, we present the first computationally and statistically efficient estimation algorithms for the most standard setting of this problem where the models are linear. In the known-index case, we require poly$(1/\varepsilon, k, d)$ sample and time complexity to estimate all model parameters to accuracy $\varepsilon$ in $d$ dimensions, and can accommodate quite general selection criteria. In the more challenging unknown-index case, even the identifiability of the linear models (from infinitely many samples) was not known. We show three results in this case for the commonly studied $\max$ self-selection criterion: (1) we show that the linear models are indeed identifiable, (2) for general $k$ we provide an algorithm with poly$(d) \exp(\text{poly}(k))$ sample and time complexity to estimate the regression parameters up to error $1/\text{poly}(k)$, and (3) for $k = 2$ we provide an algorithm for any error $\varepsilon$ and poly$(d, 1/\varepsilon)$ sample and time complexity.


EM's Convergence in Gaussian Latent Tree Models

arXiv.org Artificial Intelligence

We study the optimization landscape of the log-likelihood function and the convergence of the Expectation-Maximization (EM) algorithm in latent Gaussian tree models, i.e. tree-structured Gaussian graphical models whose leaf nodes are observable and non-leaf nodes are unobservable. We show that the unique non-trivial stationary point of the population log-likelihood is its global maximum, and establish that the expectation-maximization algorithm is guaranteed to converge to it in the single latent variable case. Our results for the landscape of the log-likelihood function in general latent tree models provide support for the extensive practical use of maximum likelihood based-methods in this setting. Our results for the EM algorithm extend an emerging line of work on obtaining global convergence guarantees for this celebrated algorithm. We show our results for the non-trivial stationary points of the log-likelihood by arguing that a certain system of polynomial equations obtained from the EM updates has a unique non-trivial solution. The global convergence of the EM algorithm follows by arguing that all trivial fixed points are higher-order saddle points.


Fast Rates for Nonparametric Online Learning: From Realizability to Learning in Games

arXiv.org Machine Learning

We study fast rates of convergence in the setting of nonparametric online regression, namely where regret is defined with respect to an arbitrary function class which has bounded complexity. Our contributions are two-fold: - In the realizable setting of nonparametric online regression with the absolute loss, we propose a randomized proper learning algorithm which gets a near-optimal mistake bound in terms of the sequential fat-shattering dimension of the hypothesis class. In the setting of online classification with a class of Littlestone dimension $d$, our bound reduces to $d \cdot {\rm poly} \log T$. This result answers a question as to whether proper learners could achieve near-optimal mistake bounds; previously, even for online classification, the best known mistake bound was $\tilde O( \sqrt{dT})$. Further, for the real-valued (regression) setting, the optimal mistake bound was not even known for improper learners, prior to this work. - Using the above result, we exhibit an independent learning algorithm for general-sum binary games of Littlestone dimension $d$, for which each player achieves regret $\tilde O(d^{3/4} \cdot T^{1/4})$. This result generalizes analogous results of Syrgkanis et al. (2015) who showed that in finite games the optimal regret can be accelerated from $O(\sqrt{T})$ in the adversarial setting to $O(T^{1/4})$ in the game setting. To establish the above results, we introduce several new techniques, including: a hierarchical aggregation rule to achieve the optimal mistake bound for real-valued classes, a multi-scale extension of the proper online realizable learner of Hanneke et al. (2021), an approach to show that the output of such nonparametric learning algorithms is stable, and a proof that the minimax theorem holds in all online learnable games.


Recommender Systems meet Mechanism Design

arXiv.org Machine Learning

Machine learning has developed a variety of tools for learning and representing high-dimensional distributions with structure. Recent years have also seen big advances in designing multi-item mechanisms. Akin to overfitting, however, these mechanisms can be extremely sensitive to the Bayesian prior that they target, which becomes problematic when that prior is only approximately known. We consider a multi-item mechanism design problem where the bidders' value distributions can be approximated by a topic model. Our solution builds on a recent robustification framework by Brustle et al., which disentangles the statistical challenge of estimating a multi-dimensional prior from the task of designing a good mechanism for it, robustifying the performance of the latter against the estimation error of the former. We provide an extension of the framework that allows us to exploit the expressive power of topic models to reduce the effective dimensionality of the mechanism design problem.