Goto

Collaborating Authors

 Dasgupta, Sanjoy


Incremental Clustering: The Case for Extra Clusters

Neural Information Processing Systems

The explosion in the amount of data available for analysis often necessitates a transition from batch to incremental clustering methods, which process one element at a time and typically store only a small subset of the data. In this paper, we initiate the formal analysis of incremental clustering methods focusing on the types of cluster structure that they are able to detect. We find that the incremental setting is strictly weaker than the batch model, proving that a fundamental class of cluster structures that can readily be detected in the batch setting is impossible to identify using any incremental method. Furthermore, we show how the limitations of incremental clustering can be overcome by allowing additional clusters.


Rates of Convergence for Nearest Neighbor Classification

arXiv.org Machine Learning

Nearest neighbor methods are a popular class of nonparametric estimators with several desirable properties, such as adaptivity to different distance scales in different regions of space. Prior work on convergence rates for nearest neighbor classification has not fully reflected these subtle properties. We analyze the behavior of these estimators in metric spaces and provide finite-sample, distribution-dependent rates of convergence under minimal assumptions. As a by-product, we are able to establish the universal consistency of nearest neighbor in a broader range of data spaces than was previously known. We illustrate our upper and lower bounds by introducing smoothness classes that are customized for nearest neighbor classification.


Consistent procedures for cluster tree estimation and pruning

arXiv.org Machine Learning

For a density $f$ on ${\mathbb R}^d$, a {\it high-density cluster} is any connected component of $\{x: f(x) \geq \lambda\}$, for some $\lambda > 0$. The set of all high-density clusters forms a hierarchy called the {\it cluster tree} of $f$. We present two procedures for estimating the cluster tree given samples from $f$. The first is a robust variant of the single linkage algorithm for hierarchical clustering. The second is based on the $k$-nearest neighbor graph of the samples. We give finite-sample convergence rates for these algorithms which also imply consistency, and we derive lower bounds on the sample complexity of cluster tree estimation. Finally, we study a tree pruning procedure that guarantees, under milder conditions than usual, to remove clusters that are spurious while recovering those that are salient.


Moment-based Uniform Deviation Bounds for $k$-means and Friends

Neural Information Processing Systems

Suppose $k$ centers are fit to $m$ points by heuristically minimizing the $k$-means cost; what is the corresponding fit over the source distribution? This question is resolved here for distributions with $p\geq 4$ bounded moments; in particular, the difference between the sample cost and distribution cost decays with $m$ and $p$ as $m^{\min\{-1/4, -1/2+2/p\}}$. The essential technical contribution is a mechanism to uniformly control deviations in the face of unbounded parameter sets, cost functions, and source distributions. To further demonstrate this mechanism, a soft clustering variant of $k$-means cost is also considered, namely the log likelihood of a Gaussian mixture, subject to the constraint that all covariance matrices have bounded spectrum. Lastly, a rate with refined constants is provided for $k$-means instances possessing some cluster structure.


The Fast Convergence of Incremental PCA

Neural Information Processing Systems

We prove the first finite-sample convergence rates for any incremental PCA algorithm using sub-quadratic time and memory per iteration. The algorithm analyzed is Oja's learning rule, an efficient and well-known scheme for estimating the top principal component. Our analysis of this non-convex problem yields expected and high-probability convergence rates of $\tilde{O}(1/n)$ through a novel technique. We relate our guarantees to existing rates for stochastic gradient descent on strongly convex functions, and extend those results. We also include experiments which demonstrate convergence behaviors predicted by our analysis.


Moment-based Uniform Deviation Bounds for $k$-means and Friends

arXiv.org Machine Learning

Suppose $k$ centers are fit to $m$ points by heuristically minimizing the $k$-means cost; what is the corresponding fit over the source distribution? This question is resolved here for distributions with $p\geq 4$ bounded moments; in particular, the difference between the sample cost and distribution cost decays with $m$ and $p$ as $m^{\min\{-1/4, -1/2+2/p\}}$. The essential technical contribution is a mechanism to uniformly control deviations in the face of unbounded parameter sets, cost functions, and source distributions. To further demonstrate this mechanism, a soft clustering variant of $k$-means cost is also considered, namely the log likelihood of a Gaussian mixture, subject to the constraint that all covariance matrices have bounded spectrum. Lastly, a rate with refined constants is provided for $k$-means instances possessing some cluster structure.


Learning Polytrees

arXiv.org Artificial Intelligence

We consider the task of learning the maximum-likelihood polytree from data. Our first result is a performance guarantee establishing that the optimal branching (or Chow-Liu tree), which can be computed very easily, constitutes a good approximation to the best polytree. We then show that it is not possible to do very much better, since the learning problem is NP-hard even to approximately solve within some constant factor.


A Two-round Variant of EM for Gaussian Mixtures

arXiv.org Machine Learning

Given a set of possible models (e.g., Bayesian network structures) and a data sample, in the unsupervised model selection problem the task is to choose the most accurate model with respect to the domain joint probability distribution. In contrast to this, in supervised model selection it is a priori known that the chosen model will be used in the future for prediction tasks involving more ``focused' predictive distributions. Although focused predictive distributions can be produced from the joint probability distribution by marginalization, in practice the best model in the unsupervised sense does not necessarily perform well in supervised domains. In particular, the standard marginal likelihood score is a criterion for the unsupervised task, and, although frequently used for supervised model selection also, does not perform well in such tasks. In this paper we study the performance of the marginal likelihood score empirically in supervised Bayesian network selection tasks by using a large number of publicly available classification data sets, and compare the results to those obtained by alternative model selection criteria, including empirical crossvalidation methods, an approximation of a supervised marginal likelihood measure, and a supervised version of Dawids prequential(predictive sequential) principle.The results demonstrate that the marginal likelihood score does NOT perform well FOR supervised model selection, WHILE the best results are obtained BY using Dawids prequential r napproach.


Experiments with Random Projection

arXiv.org Machine Learning

Recent theoretical work has identified random projection as a promising dimensionality reduction technique for learning mixtures of Gausians. Here we summarize these results and illustrate them by a wide variety of experiments on synthetic and real data.


A concentration theorem for projections

arXiv.org Machine Learning

X in R^D has mean zero and finite second moments. We show that there is a precise sense in which almost all linear projections of X into R^d (for d < D) look like a scale-mixture of spherical Gaussians -- specifically, a mixture of distributions N(0, sigma^2 I_d) where the weight of the particular sigma component is P (| X |^2 = sigma^2 D). The extent of this effect depends upon the ratio of d to D, and upon a particular coefficient of eccentricity of X's distribution. We explore this result in a variety of experiments.