Not enough data to create a plot.
Try a different view from the menu above.
Daniel Soudry
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar, Jason D. Lee, Daniel Soudry, Nati Srebro
Large scale neural networks used in practice are highly over-parameterized with far more trainable model parameters compared to the number of training examples. Consequently, optimization objectives for learning such high capacity models have many global minima that fit training data perfectly. However, minimizing the training loss using specific optimization algorithms take us to not just any global minima, but some special global minima, e.g., global minima minimizing some regularizer R(β). In over-parameterized models, specially deep neural networks, much, if not most, of the inductive bias of the learned model comes from this implicit regularization from the optimization algorithm. Understanding the implicit bias, e.g., via characterizing R(β), is thus essential for understanding how and what the model learns.
Post training 4-bit quantization of convolutional networks for rapid-deployment
Ron Banner, Yury Nahshan, Daniel Soudry
Convolutional neural networks require significant memory bandwidth and storage for intermediate computations, apart from substantial computing resources. Neural network quantization has significant benefits in reducing the amount of intermediate results, but it often requires the full datasets and time-consuming fine tuning to recover the accuracy lost after quantization. This paper introduces the first practical 4-bit post training quantization approach: it does not involve training the quantized model (fine-tuning), nor it requires the availability of the full dataset. We target the quantization of both activations and weights and suggest three complementary methods for minimizing quantization error at the tensor level, two of whom obtain a closed-form analytical solution. Combining these methods, our approach achieves accuracy that is just a few percents less the state-of-the-art baseline across a wide range of convolutional models.
Binarized Neural Networks
Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio
We introduce a method to train Binarized Neural Networks (BNNs) - neural networks with binary weights and activations at run-time. At train-time the binary weights and activations are used for computing the parameter gradients. During the forward pass, BNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations, which is expected to substantially improve power-efficiency. To validate the effectiveness of BNNs, we conducted two sets of experiments on the Torch7 and Theano frameworks. On both, BNNs achieved nearly state-of-the-art results over the MNIST, CIFAR-10 and SVHN datasets. We also report our preliminary results on the challenging ImageNet dataset. Last but not least, we wrote a binary matrix multiplication GPU kernel with which it is possible to run our MNIST BNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The code for training and running our BNNs is available on-line.
Scalable methods for 8-bit training of neural networks
Ron Banner, Itay Hubara, Elad Hoffer, Daniel Soudry
Quantized Neural Networks (QNNs) are often used to improve network efficiency during the inference phase, i.e. after the network has been trained. Extensive research in the field suggests many different quantization schemes. Still, the number of bits required, as well as the best quantization scheme, are yet unknown. Our theoretical analysis suggests that most of the training process is robust to substantial precision reduction, and points to only a few specific operations that require higher precision.
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer, Itay Hubara, Daniel Soudry
Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomenon. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase.
Norm matters: efficient and accurate normalization schemes in deep networks
Elad Hoffer, Ron Banner, Itay Golan, Daniel Soudry
Over the past few years, Batch-Normalization has been commonly used in deep networks, allowing faster training and high performance for a wide variety of applications. However, the reasons behind its merits remained unanswered, with several shortcomings that hindered its use for certain tasks. In this work, we present a novel view on the purpose and function of normalization methods and weightdecay, as tools to decouple weights' norm from the underlying optimized objective. This property highlights the connection between practices such as normalization, weight decay and learning-rate adjustments.
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar, Jason D. Lee, Daniel Soudry, Nati Srebro
Large scale neural networks used in practice are highly over-parameterized with far more trainable model parameters compared to the number of training examples. Consequently, optimization objectives for learning such high capacity models have many global minima that fit training data perfectly. However, minimizing the training loss using specific optimization algorithms take us to not just any global minima, but some special global minima, e.g., global minima minimizing some regularizer R(β). In over-parameterized models, specially deep neural networks, much, if not most, of the inductive bias of the learned model comes from this implicit regularization from the optimization algorithm. Understanding the implicit bias, e.g., via characterizing R(β), is thus essential for understanding how and what the model learns.
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer, Itay Hubara, Daniel Soudry
Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomenon. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase.