Well File:

 Dan Hendrycks


Forecasting Future World Events with Neural Networks

Neural Information Processing Systems

Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future).


Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise

Neural Information Processing Systems

The growing importance of massive datasets used for deep learning makes robustness to label noise a critical property for classifiers to have. Sources of label noise include automatic labeling, non-expert labeling, and label corruption by data poisoning adversaries. Numerous previous works assume that no source of labels can be trusted. We relax this assumption and assume that a small subset of the training data is trusted. This enables substantial label corruption robustness performance gains. In addition, particularly severe label noise can be combated by using a set of trusted data with clean labels. We utilize trusted data by proposing a loss correction technique that utilizes trusted examples in a data-efficient manner to mitigate the effects of label noise on deep neural network classifiers. Across vision and natural language processing tasks, we experiment with various label noises at several strengths, and show that our method significantly outperforms existing methods.



How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios

Neural Information Processing Systems

In recent years, deep neural networks have demonstrated increasingly strong abilities to recognize objects and activities in videos. However, as video understanding becomes widely used in real-world applications, a key consideration is developing human-centric systems that understand not only the content of the video but also how it would affect the wellbeing and emotional state of viewers. To facilitate research in this setting, we introduce two large-scale datasets with over 60,000 videos manually annotated for emotional response and subjective wellbeing. The Video Cognitive Empathy (VCE) dataset contains annotations for distributions of fine-grained emotional responses, allowing models to gain a detailed understanding of affective states. The Video to Valence (V2V) dataset contains annotations of relative pleasantness between videos, which enables predicting a continuous spectrum of wellbeing. In experiments, we show how video models that are primarily trained to recognize actions and find contours of objects can be repurposed to understand human preferences and the emotional content of videos. Although there is room for improvement, predicting wellbeing and emotional response is on the horizon for state-of-the-art models. We hope our datasets can help foster further advances at the intersection of commonsense video understanding and human preference learning.


Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty

Neural Information Processing Systems

Self-supervision provides effective representations for downstream tasks without requiring labels. However, existing approaches lag behind fully supervised training and are often not thought beneficial beyond obviating or reducing the need for annotations. We find that self-supervision can benefit robustness in a variety of ways, including robustness to adversarial examples, label corruption, and common input corruptions. Additionally, self-supervision greatly benefits out-of-distribution detection on difficult, near-distribution outliers, so much so that it exceeds the performance of fully supervised methods. These results demonstrate the promise of self-supervision for improving robustness and uncertainty estimation and establish these tasks as new axes of evaluation for future self-supervised learning research.


Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise

Neural Information Processing Systems

The growing importance of massive datasets used for deep learning makes robustness to label noise a critical property for classifiers to have. Sources of label noise include automatic labeling, non-expert labeling, and label corruption by data poisoning adversaries. Numerous previous works assume that no source of labels can be trusted. We relax this assumption and assume that a small subset of the training data is trusted. This enables substantial label corruption robustness performance gains. In addition, particularly severe label noise can be combated by using a set of trusted data with clean labels. We utilize trusted data by proposing a loss correction technique that utilizes trusted examples in a data-efficient manner to mitigate the effects of label noise on deep neural network classifiers. Across vision and natural language processing tasks, we experiment with various label noises at several strengths, and show that our method significantly outperforms existing methods.