Not enough data to create a plot.
Try a different view from the menu above.
Dai, Zhuangzhuang
Action Recognition in Real-World Ambient Assisted Living Environment
Zakka, Vincent Gbouna, Dai, Zhuangzhuang, Manso, Luis J.
The growing ageing population and their preference to maintain independence by living in their own homes require proactive strategies to ensure safety and support. Ambient Assisted Living (AAL) technologies have emerged to facilitate ageing in place by offering continuous monitoring and assistance within the home. Within AAL technologies, action recognition plays a crucial role in interpreting human activities and detecting incidents like falls, mobility decline, or unusual behaviours that may signal worsening health conditions. However, action recognition in practical AAL applications presents challenges, including occlusions, noisy data, and the need for real-time performance. While advancements have been made in accuracy, robustness to noise, and computation efficiency, achieving a balance among them all remains a challenge. To address this challenge, this paper introduces the Robust and Efficient Temporal Convolution network (RE-TCN), which comprises three main elements: Adaptive Temporal Weighting (ATW), Depthwise Separable Convolutions (DSC), and data augmentation techniques. These elements aim to enhance the model's accuracy, robustness against noise and occlusion, and computational efficiency within real-world AAL contexts. RE-TCN outperforms existing models in terms of accuracy, noise and occlusion robustness, and has been validated on four benchmark datasets: NTU RGB+D 60, Northwestern-UCLA, SHREC'17, and DHG-14/28. The code is publicly available at: https://github.com/Gbouna/RE-TCN
Detecting Worker Attention Lapses in Human-Robot Interaction: An Eye Tracking and Multimodal Sensing Study
Dai, Zhuangzhuang, Park, Jinha, Kaszowska, Aleksandra, Li, Chen
The advent of industrial robotics and autonomous systems endow human-robot collaboration in a massive scale. However, current industrial robots are restrained in co-working with human in close proximity due to inability of interpreting human agents' attention. Human attention study is non-trivial since it involves multiple aspects of the mind: perception, memory, problem solving, and consciousness. Human attention lapses are particularly problematic and potentially catastrophic in industrial workplace, from assembling electronics to operating machines. Attention is indeed complex and cannot be easily measured with single-modality sensors. Eye state, head pose, posture, and manifold environment stimulus could all play a part in attention lapses. To this end, we propose a pipeline to annotate multimodal dataset of human attention tracking, including eye tracking, fixation detection, third-person surveillance camera, and sound. We produce a pilot dataset containing two fully annotated phone assembly sequences in a realistic manufacturing environment. We evaluate existing fatigue and drowsiness prediction methods for attention lapse detection. Experimental results show that human attention lapses in production scenarios are more subtle and imperceptible than well-studied fatigue and drowsiness.