Goto

Collaborating Authors

 Dagan, Ido


Revisiting Sentence Union Generation as a Testbed for Text Consolidation

arXiv.org Artificial Intelligence

Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models' consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.


Design Choices for Crowdsourcing Implicit Discourse Relations: Revealing the Biases Introduced by Task Design

arXiv.org Artificial Intelligence

Disagreement in natural language annotation has mostly been studied from a perspective of biases introduced by the annotators and the annotation frameworks. Here, we propose to analyze another source of bias: task design bias, which has a particularly strong impact on crowdsourced linguistic annotations where natural language is used to elicit the interpretation of laymen annotators. For this purpose we look at implicit discourse relation annotation, a task that has repeatedly been shown to be difficult due to the relations' ambiguity. We compare the annotations of 1,200 discourse relations obtained using two distinct annotation tasks and quantify the biases of both methods across four different domains. Both methods are natural language annotation tasks designed for crowdsourcing. We show that the task design can push annotators towards certain relations and that some discourse relations senses can be better elicited with one or the other annotation approach. We also conclude that this type of bias should be taken into account when training and testing models.


QASem Parsing: Text-to-text Modeling of QA-based Semantics

arXiv.org Artificial Intelligence

Several recent works have suggested to represent semantic relations with questions and answers, decomposing textual information into separate interrogative natural language statements. In this paper, we consider three QA-based semantic tasks - namely, QA-SRL, QANom and QADiscourse, each targeting a certain type of predication - and propose to regard them as jointly providing a comprehensive representation of textual information. To promote this goal, we investigate how to best utilize the power of sequence-to-sequence (seq2seq) pre-trained language models, within the unique setup of semi-structured outputs, consisting of an unordered set of question-answer pairs. We examine different input and output linearization strategies, and assess the effect of multitask learning and of simple data augmentation techniques in the setting of imbalanced training data. Consequently, we release the first unified QASem parsing tool, practical for downstream applications who can benefit from an explicit, QA-based account of information units in a text.


Utilizing Evidence Spans via Sequence-Level Contrastive Learning for Long-Context Question Answering

arXiv.org Artificial Intelligence

Long-range transformer models have achieved encouraging results on long-context question answering (QA) tasks. Such tasks often require reasoning over a long document, and they benefit from identifying a set of evidence spans (e.g., sentences) that provide supporting evidence for addressing the question. In this work, we propose a novel method for equipping long-range transformers with an additional sequence-level objective for better identification of supporting evidence spans. We achieve this by proposing an additional contrastive supervision signal in finetuning, where the model is encouraged to explicitly discriminate supporting evidence sentences from negative ones by maximizing the question-evidence similarity. The proposed additional loss exhibits consistent improvements on three different strong long-context transformer models, across two challenging question answering benchmarks - HotpotQA and QAsper.


ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System

arXiv.org Artificial Intelligence

The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis.


Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Generation

arXiv.org Artificial Intelligence

Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two steps into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the system's reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.


Term Set Expansion based on Multi-Context Term Embeddings: an End-to-end Workflow

arXiv.org Artificial Intelligence

We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to end workflow for term set expansion. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used for solving real-life use cases including integration in an automated recruitment system and an issues and defects resolution system. A video demo of SetExpander is available at https://drive.google.com/open?id=1e545bB87Autsch36DjnJHmq3HWfSd1Rv (some images were blurred for privacy reasons).


Identifying Structure across Pre-partitioned Data

Neural Information Processing Systems

We propose an information-theoretic clustering approach that incorporates a pre-known partition of the data, aiming to identify common clusters that cut across the given partition. In the standard clustering setting the formation of clusters is guided by a single source of feature information. The newly utilized pre-partition factor introduces an additional bias that counterbalances the impact of the features whenever they become correlated with this known partition. The resulting algorithmic framework was applied successfully to synthetic data, as well as to identifying text-based cross-religion correspondences.


Identifying Structure across Pre-partitioned Data

Neural Information Processing Systems

We propose an information-theoretic clustering approach that incorporates a pre-known partition of the data, aiming to identify common clusters that cut across the given partition. In the standard clustering setting the formation of clusters is guided by a single source of feature information. The newly utilized pre-partition factor introduces an additional bias that counterbalances the impact of the features whenever they become correlated with this known partition. The resulting algorithmic framework was applied successfully to synthetic data, as well as to identifying text-based cross-religion correspondences.