Plotting

 D'Aronco, Stefano


Recognition of Unseen Bird Species by Learning from Field Guides

arXiv.org Artificial Intelligence

We exploit field guides to learn bird species recognition, in particular zero-shot recognition of unseen species. Illustrations contained in field guides deliberately focus on discriminative properties of each species, and can serve as side information to transfer knowledge from seen to unseen bird species. We study two approaches: (1) a contrastive encoding of illustrations, which can be fed into standard zero-shot learning schemes; and (2) a novel method that leverages the fact that illustrations are also images and as such structurally more similar to photographs than other kinds of side information. Our results show that illustrations from field guides, which are readily available for a wide range of species, are indeed a competitive source of side information for zero-shot learning. On a subset of the iNaturalist2021 dataset with 749 seen and 739 unseen species, we obtain a classification accuracy of unseen bird species of $12\%$ @top-1 and $38\%$ @top-10, which shows the potential of field guides for challenging real-world scenarios with many species. Our code is available at https://github.com/ac-rodriguez/zsl_billow


Fine-grained Species Recognition with Privileged Pooling: Better Sample Efficiency Through Supervised Attention

arXiv.org Artificial Intelligence

We propose a scheme for supervised image classification that uses privileged information, in the form of keypoint annotations for the training data, to learn strong models from small and/or biased training sets. Our main motivation is the recognition of animal species for ecological applications such as biodiversity modelling, which is challenging because of long-tailed species distributions due to rare species, and strong dataset biases such as repetitive scene background in camera traps. To counteract these challenges, we propose a visual attention mechanism that is supervised via keypoint annotations that highlight important object parts. This privileged information, implemented as a novel privileged pooling operation, is only required during training and helps the model to focus on regions that are discriminative. In experiments with three different animal species datasets, we show that deep networks with privileged pooling can use small training sets more efficiently and generalize better.


FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

arXiv.org Artificial Intelligence

The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it and comes very close to the upper bound of an explicit ensemble of networks (sometimes even beating it), at a fraction of the memory cost.