Plotting

 Costa, Miguel


Climate Adaptation with Reinforcement Learning: Experiments with Flooding and Transportation in Copenhagen

arXiv.org Artificial Intelligence

Due to climate change the frequency and intensity of extreme rainfall events, which contribute to urban flooding, are expected to increase in many places. These floods can damage transport infrastructure and disrupt mobility, highlighting the need for cities to adapt to escalating risks. Reinforcement learning (RL) serves as a powerful tool for uncovering optimal adaptation strategies, determining how and where to deploy adaptation measures effectively, even under significant uncertainty. In this study, we leverage RL to identify the most effective timing and locations for implementing measures, aiming to reduce both direct and indirect impacts of flooding. Our framework integrates climate change projections of future rainfall events and floods, models city-wide motorized trips, and quantifies direct and indirect impacts on infrastructure and mobility. Preliminary results suggest that our RL-based approach can significantly enhance decision-making by prioritizing interventions in specific urban areas and identifying the optimal periods for their implementation. Our framework is publicly available: https://github.com/


David and Goliath: An Empirical Evaluation of Attacks and Defenses for QNNs at the Deep Edge

arXiv.org Artificial Intelligence

ML is shifting from the cloud to the edge. Edge computing reduces the surface exposing private data and enables reliable throughput guarantees in real-time applications. Of the panoply of devices deployed at the edge, resource-constrained MCUs, e.g., Arm Cortex-M, are more prevalent, orders of magnitude cheaper, and less power-hungry than application processors or GPUs. Thus, enabling intelligence at the deep edge is the zeitgeist, with researchers focusing on unveiling novel approaches to deploy ANNs on these constrained devices. Quantization is a well-established technique that has proved effective in enabling the deployment of neural networks on MCUs; however, it is still an open question to understand the robustness of QNNs in the face of adversarial examples. To fill this gap, we empirically evaluate the effectiveness of attacks and defenses from (full-precision) ANNs on (constrained) QNNs. Our evaluation includes three QNNs targeting TinyML applications, ten attacks, and six defenses. With this study, we draw a set of interesting findings. First, quantization increases the point distance to the decision boundary and leads the gradient estimated by some attacks to explode or vanish. Second, quantization can act as a noise attenuator or amplifier, depending on the noise magnitude, and causes gradient misalignment. Regarding adversarial defenses, we conclude that input pre-processing defenses show impressive results on small perturbations; however, they fall short as the perturbation increases. At the same time, train-based defenses increase the average point distance to the decision boundary, which holds after quantization. However, we argue that train-based defenses still need to smooth the quantization-shift and gradient misalignment phenomenons to counteract adversarial example transferability to QNNs. All artifacts are open-sourced to enable independent validation of results.


Shifting Capsule Networks from the Cloud to the Deep Edge

arXiv.org Artificial Intelligence

Capsule networks (CapsNets) are an emerging trend in image processing. In contrast to a convolutional neural network, CapsNets are not vulnerable to object deformation, as the relative spatial information of the objects is preserved across the network. However, their complexity is mainly related to the capsule structure and the dynamic routing mechanism, which makes it almost unreasonable to deploy a CapsNet, in its original form, in a resource-constrained device powered by a small microcontroller (MCU). In an era where intelligence is rapidly shifting from the cloud to the edge, this high complexity imposes serious challenges to the adoption of CapsNets at the very edge. To tackle this issue, we present an API for the execution of quantized CapsNets in Arm Cortex-M and RISC-V MCUs. Our software kernels extend the Arm CMSIS-NN and RISC-V PULP-NN to support capsule operations with 8-bit integers as operands. Along with it, we propose a framework to perform post-training quantization of a CapsNet. Results show a reduction in memory footprint of almost 75%, with accuracy loss ranging from 0.07% to 0.18%. In terms of throughput, our Arm Cortex-M API enables the execution of primary capsule and capsule layers with medium-sized kernels in just 119.94 and 90.60 milliseconds (ms), respectively (STM32H755ZIT6U, Cortex-M7 @ 480 MHz). For the GAP-8 SoC (RISC-V RV32IMCXpulp @ 170 MHz), the latency drops to 7.02 and 38.03 ms, respectively.