Plotting

 Coop, Robert


Mapping the Landscape of Human-Level Artificial General Intelligence

AI Magazine

Of course, this is far from the first attempt to plot a course toward human-level AGI: arguably this was the goal of the founders of the field of artificial intelligence in the 1950s, and has been pursued by a steady stream of AI researchers since, even as the majority of the AI field has focused its attention on more narrow, specific subgoals. The ideas presented here build on the ideas of others in innumerable ways, but to review the history of AI and situate the current effort in the context of its predecessors would require a much longer article than this one. Thus we have chosen to focus on the results of our AGI roadmap discussions, acknowledging in a broad way the many debts owed to many prior researchers. References to the prior literature on evaluation of advanced AI systems are given by Laird (Laird et al. 2009) and Geortzel and Bugaj (2009), which may in a limited sense be considered prequels to this article. We begin by discussing AGI in general and adopt a pragmatic goal for measuring progress toward its attainment. An initial capability landscape for AGI The heterogeneity of general intelligence in will be presented, drawing on major themes from humans makes it practically impossible to develop developmental psychology and illuminated by a comprehensive, fine-grained measurement system mathematical, physiological, and informationprocessing for AGI. While we encourage research in defining perspectives. The challenge of identifying such high-fidelity metrics for specific capabilities, appropriate tasks and environments for measuring we feel that at this stage of AGI development AGI will be taken up. Several scenarios will a pragmatic, high-level goal is the best we can be presented as milestones outlining a roadmap agree upon. I advocate beginning with a system that has minimal, although extensive, built-in capabilities. Many variant approaches have been proposed A classic example of the narrow AI approach was for achieving such a goal, and both the AI and AGI IBM's Deep Blue system (Campbell, Hoane, and communities have been working for decades on Hsu 2002), which successfully defeated world chess the myriad subgoals that would have to be champion Gary Kasparov but could not readily achieved and integrated to deliver a comprehensive apply that skill to any other problem domain without AGI system.


DeSTIN: A Scalable Deep Learning Architecture with Application to High-Dimensional Robust Pattern Recognition

AAAI Conferences

The topic of deep learning systems has received significant attention during the past few years, particularly as a biologically-inspired approach to processing highdimensional signals. The latter often involve spatiotemporal information that may span large scales, rendering its representation in the general case highly challenging. Deep learning networks attempt to overcome this challenge by means of a hierarchical architecture that is comprised of common circuits with similar (and often cortically influenced) functionality. The goal of such systems is to represent sensory observations in a manner that will later facilitate robust pattern classification, mimicking a key attribute of the mammal brain. This stands in contrast with the mainstream approach of pre-processing the data so as to reduce its dimensionality — a paradigm that often results in sub-optimal performance. This paper presents a Deep SpatioTemporal Inference Network (DeSTIN) — a scalable deep learning architecture that relies on a combination of unsupervised learning and Bayesian inference. Dynamic pattern learning forms an inherent way of capturing complex spatiotemporal dependencies. Simulation results demonstrate the core capabilities of the proposed framework, particularly in the context of high-dimensional signal classification.