Plotting

 Coles, Amanda


Improving Search by Utilizing State Information in OPTIC Planners Compilation to LP

arXiv.org Artificial Intelligence

Automated planners are computer tools that allow autonomous agents to make strategies and decisions by determining a set of actions for the agent that to take, which will carry a system from a given initial state to the desired goal state. Many planners are domain-independent, allowing their deployment in a variety of domains. Such is the broad family of OPTIC planners. These planners perform Forward Search and call a Linear Programming (LP) solver multiple times at every state to check for consistency and to set bounds on the numeric variables. These checks can be computationally costly, especially in real-life applications. This paper suggests a method for identifying information about the specific state being evaluated, allowing the formulation of the equations to facilitate better solver selection and faster LP solving. The usefulness of the method is demonstrated in six domains and is shown to enhance performance significantly.


Temporal Planning with Preferences and Time-Dependent Continuous Costs

AAAI Conferences

Temporal planning methods usually focus on the objective of minimizing makespan. Unfortunately, this misses a large class of planning problems where it is important to consider a wider variety of temporal and non-temporal preferences, making makespan lower-order concern. In this paper we consider modeling and reasoning with plan quality metrics that are not directly correlated with plan makespan, building on the planner POPF. We begin with the preferences defined in PDDL3, and present a mixed integer programming encoding to manage the the interaction between the hard temporal constraints for plan steps, and soft temporal constraints for preferences. To widen the support of metrics that can be expressed directly in PDDL, we then discuss an extension to soft-deadlines with continuous cost functions, avoiding the need to approximate these with several PDDL3 discrete-cost preferences. We demonstrate the success of our new planner on the benchmark temporal planning problems with preferences, showing that it is the state-of-the-art for such problems. We then analyze the benefits of reasoning with continuous (versus discretized) models of domains with continuous cost functions, showing the improvement in solution quality afforded through making the continuous cost function directly available to the planner.


A Survey of the Seventh International Planning Competition

AI Magazine

In this article we review the 2011 International Planning Competition. We give an overview of the history of the competition, discussing how it has developed since its first edition in 1998. The 2011 competition was run in three main separate tracks: the deterministic (classical) track; the learning track; and the uncertainty track. Each track proposed its own distinct set of new challenges and the participants rose to these admirably, the results of each track showing promising progress in each area. The competition attracted a record number of participants this year, showing its continued and strong position as a major central pillar of the international planning research community.


LPRPG-P: Relaxed Plan Heuristics for Planning with Preferences

AAAI Conferences

In this paper we present a planner, LPRPG-P, capable of reasoning with the non-temporal subset of PDDL 3 preferences. Our focus is on computation of relaxed plan based heuristics that effectively guide a planner towards good solutions satisfying preferences. We build on the planner LPRPG, a hybrid relaxed planning graph (RPG)--linear programming (LP) approach. We make extensions to the RPG to reason with propositional preferences, and to the LP to reason with numeric preferences. LPRPG-P is the first planner with direct guidance for numeric preference satisfaction, exploiting the strong numeric reasoning of the LP. We introduce an anytime search approach for use with our new heuristic, and present results showing that LPRPG-P extends the state of the art in domain-independent planning with preferences.