Plotting

 Cole, Clint S.


A Low-Power CMOS Circuit Which Emulates Temporal Electrical Properties of Neurons

Neural Information Processing Systems

Popular neuron models are based upon some statistical measure of known natural behavior. Whether that measure is expressed in terms of average firing rate or a firing probability, the instantaneous neuron activation is only represented in an abstract sense. Artificial electronic neurons derived from these models represent this excitation level as a binary code or a continuous voltage at the output of a summing amplifier. While such models have been shown to perform well for many applications, and form an integral part of much current work, they only partially emulate the manner in which natural neural networks operate. They ignore, for example, differences in relative arrival times of neighboring action potentials -- an important characteristic known to exist in natural auditory and visual networks {Sejnowski, 1986}. They are also less adaptable to fme-grained, neuron-centered learning, like the post-tetanic facilitation observed in natural neurons. We are investigating the implementation and application of neuron circuits which better approximate natural neuron function.


A Low-Power CMOS Circuit Which Emulates Temporal Electrical Properties of Neurons

Neural Information Processing Systems

Popular neuron models are based upon some statistical measure of known natural behavior. Whether that measure is expressed in terms of average firing rate or a firing probability, the instantaneous neuron activation is only represented in an abstract sense. Artificial electronic neurons derived from these models represent this excitation level as a binary code or a continuous voltage at the output of a summing amplifier. While such models have been shown to perform well for many applications, and form an integral part of much current work, they only partially emulate the manner in which natural neural networks operate. They ignore, for example, differences in relative arrival times of neighboring action potentials -- an important characteristic known to exist in natural auditory and visual networks {Sejnowski, 1986}. They are also less adaptable to fme-grained, neuron-centered learning, like the post-tetanic facilitation observed in natural neurons. We are investigating the implementation and application of neuron circuits which better approximate natural neuron function.


A Low-Power CMOS Circuit Which Emulates Temporal Electrical Properties of Neurons

Neural Information Processing Systems

Popular neuron models are based upon some statistical measure of known natural behavior. Whether that measure is expressed in terms of average firing rate or a firing probability, the instantaneous neuron activation is only represented in an abstract sense. Artificial electronic neurons derived from these models represent this excitation level as a binary code or a continuous voltage at the output of a summing amplifier. While such models have been shown to perform well for many applications, andform an integral part of much current work, they only partially emulate the manner in which natural neural networks operate. They ignore, for example, differences in relative arrival times of neighboring action potentials -- an important characteristic known to exist in natural auditory and visual networks {Sejnowski, 1986}. They are also less adaptable to fme-grained, neuron-centered learning, like the post-tetanic facilitation observed in natural neurons. We are investigating the implementation and application of neuron circuits which better approximate natural neuron function.