Not enough data to create a plot.
Try a different view from the menu above.
Cohn, Trevor
A Stochastic Decoder for Neural Machine Translation
Schulz, Philip, Aziz, Wilker, Cohn, Trevor
The process of translation is ambiguous, in that there are typically many valid trans- lations for a given sentence. This gives rise to significant variation in parallel cor- pora, however, most current models of machine translation do not account for this variation, instead treating the prob- lem as a deterministic process. To this end, we present a deep generative model of machine translation which incorporates a chain of latent variables, in order to ac- count for local lexical and syntactic varia- tion in parallel corpora. We provide an in- depth analysis of the pitfalls encountered in variational inference for training deep generative models. Experiments on sev- eral different language pairs demonstrate that the model consistently improves over strong baselines.
Towards Decoding as Continuous Optimization in Neural Machine Translation
Hoang, Cong Duy Vu, Haffari, Gholamreza, Cohn, Trevor
We propose a novel decoding approach for neural machine translation (NMT) based on continuous optimisation. We convert decoding - basically a discrete optimization problem - into a continuous optimization problem. The resulting constrained continuous optimisation problem is then tackled using gradient-based methods. Our powerful decoding framework enables decoding intractable models such as the intersection of left-to-right and right-to-left (bidirectional) as well as source-to-target and target-to-source (bilingual) NMT models. Our empirical results show that our decoding framework is effective, and leads to substantial improvements in translations generated from the intersected models where the typical greedy or beam search is not feasible. We also compare our framework against reranking, and analyse its advantages and disadvantages.
DyNet: The Dynamic Neural Network Toolkit
Neubig, Graham, Dyer, Chris, Goldberg, Yoav, Matthews, Austin, Ammar, Waleed, Anastasopoulos, Antonios, Ballesteros, Miguel, Chiang, David, Clothiaux, Daniel, Cohn, Trevor, Duh, Kevin, Faruqui, Manaal, Gan, Cynthia, Garrette, Dan, Ji, Yangfeng, Kong, Lingpeng, Kuncoro, Adhiguna, Kumar, Gaurav, Malaviya, Chaitanya, Michel, Paul, Oda, Yusuke, Richardson, Matthew, Saphra, Naomi, Swayamdipta, Swabha, Yin, Pengcheng
We describe DyNet, a toolkit for implementing neural network models based on dynamic declaration of network structure. In the static declaration strategy that is used in toolkits like Theano, CNTK, and TensorFlow, the user first defines a computation graph (a symbolic representation of the computation), and then examples are fed into an engine that executes this computation and computes its derivatives. In DyNet's dynamic declaration strategy, computation graph construction is mostly transparent, being implicitly constructed by executing procedural code that computes the network outputs, and the user is free to use different network structures for each input. Dynamic declaration thus facilitates the implementation of more complicated network architectures, and DyNet is specifically designed to allow users to implement their models in a way that is idiomatic in their preferred programming language (C++ or Python). One challenge with dynamic declaration is that because the symbolic computation graph is defined anew for every training example, its construction must have low overhead. To achieve this, DyNet has an optimized C++ backend and lightweight graph representation. Experiments show that DyNet's speeds are faster than or comparable with static declaration toolkits, and significantly faster than Chainer, another dynamic declaration toolkit. DyNet is released open-source under the Apache 2.0 license and available at http://github.com/clab/dynet.
Convolution Kernels for Discriminative Learning from Streaming Text
Lukasik, Michal (University of Sheffield) | Cohn, Trevor (University of Melbourne)
Time series modeling is an important problem with many applications in different domains. Here we consider discriminative learning from time series, where we seek to predict an output response variable based on time series input. We develop a method based on convolution kernels to model discriminative learning over streams of text. Our method outperforms competitive baselines in three synthetic and two real datasets, rumour frequency modeling and popularity prediction tasks.
Document Context Language Models
Ji, Yangfeng, Cohn, Trevor, Kong, Lingpeng, Dyer, Chris, Eisenstein, Jacob
Text documents are structured on multiple levels of detail: individual words are related by syntax, but larger units of text are related by discourse structure. Existing language models generally fail to account for discourse structure, but it is crucial if we are to have language models that reward coherence and generate coherent texts. We present and empirically evaluate a set of multi-level recurrent neural network language models, called Document-Context Language Models (DCLM), which incorporate contextual information both within and beyond the sentence. In comparison with word-level recurrent neural network language models, the DCLM models obtain slightly better predictive likelihoods, and considerably better assessments of document coherence.
Predicting Peer-to-Peer Loan Rates Using Bayesian Non-Linear Regression
Bitvai, Zsolt (University of Sheffield) | Cohn, Trevor (University of Melbourne)
Peer-to-peer lending is a new highly liquid market for debt, which is rapidly growing in popularity. Here we consider modelling market rates, developing a non-linear Gaussian Process regression method which incorporates both structured data and unstructured text from the loan application. We show that the peer-to-peer market is predictable, and identify a small set of key factors with high predictive power. Our approach outperforms baseline methods for predicting market rates, and generates substantial profit in a trading simulation.
Trendminer: An Architecture for Real Time Analysis of Social Media Text
Preotiuc-Pietro, Daniel (University of Sheffield) | Samangooei, Sina (University of Southampton) | Cohn, Trevor (University of Southampton) | Gibbins, Nicholas (University of Sheffield) | Niranjan, Mahesan (University of Southampton)
The emergence of online social networks (OSNs) and the accompanying availability of large amounts of data, pose a number of new natural language processing (NLP) and computational challenges. Data from OSNs is different to data from traditional sources (e.g. newswire). The texts are short, noisy and conversational. Another important issue is that data occurs in a real-time streams, needing immediate analysis that is grounded in time and context. In this paper we describe a new open-source framework for efficient text processing of streaming OSN data (available at www.trendminer-project.eu). Whilst researchers have made progress in adapting or creating text analysis tools for OSN data, a system to unify these tasks has yet to be built. Our system is focused on a real world scenario where fast processing and accuracy is paramount. We use the MapReduce framework for distributed computing and present running times for our system in order to show that scaling to online scenarios is feasible.We describe the components of the system and evaluate their accuracy. Our system supports easy integration of future modules in order to extend its functionality.
Bayesian Synchronous Grammar Induction
Blunsom, Phil, Cohn, Trevor, Osborne, Miles
We present a novel method for inducing synchronous context free grammars (SCFGs) from a corpus of parallel string pairs. SCFGs can model equivalence between strings in terms of substitutions, insertions and deletions, and the reordering of sub-strings. We develop a non-parametric Bayesian model and apply it to a machine translation task, using priors to replace the various heuristics commonly used in this field. Using a variational Bayes training procedure, we learn the latent structure of translation equivalence through the induction of synchronous grammar categories for phrasal translations, showing improvements in translation performance over previously proposed maximum likelihood models.