Goto

Collaborating Authors

 Cohen, Jonathan D.


An exploration-exploitation model based on norepinepherine and dopamine activity

Neural Information Processing Systems

We propose a model by which dopamine (DA) and norepinepherine (NE) combine to alternate behavior between relatively exploratory and exploitative modes. The model is developed for a target detection task for which there is extant single neuron recording data available from locus coeruleus (LC) NE neurons. An exploration-exploitation tradeoff is elicited by regularly switching which of the two stimuli are rewarded. DA functions within the model to change synaptic weights according to a reinforcement learning algorithm. Exploration is mediated by the state of LC firing, with higher tonic and lower phasic activity producing greater response variability. The opposite state of LC function, with lower baseline firing rate and greater phasic responses, favors exploitative behavior. Changes in LC firing mode result from combined measures of response conflict and reward rate, where response conflict is monitored using models of anterior cingulate cortex (ACC). Increased long-term response conflict and decreased reward rate, which occurs following reward contingency switch, favors the higher tonic state of LC function and NE release.


A Computational Model of Prefrontal Cortex Function

Neural Information Processing Systems

Accumulating data from neurophysiology and neuropsychology have suggested two information processing roles for prefrontal cortex (PFC): 1) short-term active memory; and 2) inhibition. We present a new behavioral task and a computational model which were developed in parallel. The task was developed to probe both of these prefrontal functions simultaneously, and produces a rich set of behavioral data that act as constraints on the model. The model is implemented in continuous-time, thus providing a natural framework in which to study the temporal dynamics of processing in the task. We show how the model can be used to examine the behavioral consequences of neuromodulation in PFC. Specifically, we use the model to make novel and testable predictions regarding the behavioral performance of schizophrenics, who are hypothesized to suffer from reduced dopaminergic tone in this brain area.


A Computational Model of Prefrontal Cortex Function

Neural Information Processing Systems

Accumulating data from neurophysiology and neuropsychology have suggested two information processing roles for prefrontal cortex (PFC):1) short-term active memory; and 2) inhibition. We present a new behavioral task and a computational model which were developed in parallel. The task was developed to probe both of these prefrontal functions simultaneously, and produces a rich set of behavioral data that act as constraints on the model. The model is implemented in continuous-time, thus providing a natural framework in which to study the temporal dynamics of processing in the task. We show how the model can be used to examine the behavioral consequencesof neuromodulation in PFC. Specifically, we use the model to make novel and testable predictions regarding the behavioral performance of schizophrenics, who are hypothesized to suffer from reduced dopaminergic tone in this brain area.


The Effect of Catecholamines on Performance: From Unit to System Behavior

Neural Information Processing Systems

We present a model of catecholamine effects in a network of neural-like elements. We argue that changes in the responsivity of individual elements do not affect their ability to detect a signal and ignore noise. However. the same changes in cell responsivity in a network of such elements do improve the signal detection performance of the network as a whole. We show how this result can be used in a computer simulation of behavior to account for the effect of eNS stimulants on the signal detection performance of human subjects.


The Effect of Catecholamines on Performance: From Unit to System Behavior

Neural Information Processing Systems

We present a model of catecholamine effects in a network of neural-like elements. We argue that changes in the responsivity of individual elements do not affect their ability to detect a signal and ignore noise. However. the same changes in cell responsivity in a network of such elements do improve the signal detection performance of the network as a whole. We show how this result can be used in a computer simulation of behavior to account for the effect of eNS stimulants on the signal detection performance of human subjects.