Plotting

 Codella, James


Phenotypical Ontology Driven Framework for Multi-Task Learning

arXiv.org Artificial Intelligence

Despite the large number of patients in Electronic Health Records (EHRs), the subset of usable data for modeling outcomes of specific phenotypes are often imbalanced and of modest size. This can be attributed to the uneven coverage of medical concepts in EHRs. In this paper, we propose OMTL, an Ontology-driven Multi-Task Learning framework, that is designed to overcome such data limitations. The key contribution of our work is the effective use of knowledge from a predefined well-established medical relationship graph (ontology) to construct a novel deep learning network architecture that mirrors this ontology. It can effectively leverage knowledge from a well-established medical relationship graph (ontology) by constructing a deep learning network architecture that mirrors this graph. This enables common representations to be shared across related phenotypes, and was found to improve the learning performance. The proposed OMTL naturally allows for multitask learning of different phenotypes on distinct predictive tasks. These phenotypes are tied together by their semantic distance according to the external medical ontology. Using the publicly available MIMIC-III database, we evaluate OMTL and demonstrate its efficacy on several real patient outcome predictions over state-of-the-art multi-task learning schemes.


A Canonical Architecture For Predictive Analytics on Longitudinal Patient Records

arXiv.org Artificial Intelligence

The architecture Many institutions within the healthcare ecosystem are making is designed to accommodate trust and reproducibility as significant investments in AI technologies to optimize their business an inherent part of the AI life cycle and support the needs for a operations at lower cost with improved patient outcomes. Despite deployed AI system in healthcare. In what follows, we start with the hype with AI, the full realization of this potential is seriously a crisp articulation of challenges that we have identified to derive hindered by several systemic problems, including data privacy, the requirements for this architecture. We then follow with a description security, bias, fairness, and explainability. In this paper, we propose of this architecture before providing qualitative evidence a novel canonical architecture for the development of AI models of its capabilities in real world settings.


ODVICE: An Ontology-Driven Visual Analytic Tool for Interactive Cohort Extraction

arXiv.org Machine Learning

Increased availability of electronic health records (EHR) has enabled researchers to study various medical questions. Cohort selection for the hypothesis under investigation is one of the main consideration for EHR analysis. For uncommon diseases, cohorts extracted from EHRs contain very limited number of records - hampering the robustness of any analysis. Data augmentation methods have been successfully applied in other domains to address this issue mainly using simulated records. In this paper, we present ODVICE, a data augmentation framework that leverages the medical concept ontology to systematically augment records using a novel ontologically guided Monte-Carlo graph spanning algorithm. The tool allows end users to specify a small set of interactive controls to control the augmentation process. We analyze the importance of ODVICE by conducting studies on MIMIC-III dataset for two learning tasks. Our results demonstrate the predictive performance of ODVICE augmented cohorts, showing ~30% improvement in area under the curve (AUC) over the non-augmented dataset and other data augmentation strategies.