Not enough data to create a plot.
Try a different view from the menu above.
Ciravegna, Gabriele
Neural Interpretable Reasoning
Barbiero, Pietro, Marra, Giuseppe, Ciravegna, Gabriele, Debot, David, De Santis, Francesco, Diligenti, Michelangelo, Zarlenga, Mateo Espinosa, Giannini, Francesco
We formalize a novel modeling framework for achieving interpretability in deep learning, anchored in the principle of inference equivariance. While the direct verification of interpretability scales exponentially with the number of variables of the system, we show that this complexity can be mitigated by treating interpretability as a Markovian property and employing neural re-parametrization techniques. Building on these insights, we propose a new modeling paradigm -- neural generation and interpretable execution -- that enables scalable verification of equivariance. This paradigm provides a general approach for designing Neural Interpretable Reasoners that are not only expressive but also transparent.
Voice Disorder Analysis: a Transformer-based Approach
Koudounas, Alkis, Ciravegna, Gabriele, Fantini, Marco, Succo, Giovanni, Crosetti, Erika, Cerquitelli, Tania, Baralis, Elena
Voice disorders are pathologies significantly affecting patient quality of life. However, non-invasive automated diagnosis of these pathologies is still under-explored, due to both a shortage of pathological voice data, and diversity of the recording types used for the diagnosis. This paper proposes a novel solution that adopts transformers directly working on raw voice signals and addresses data shortage through synthetic data generation and data augmentation. Further, we consider many recording types at the same time, such as sentence reading and sustained vowel emission, by employing a Mixture of Expert ensemble to align the predictions on different data types. The experimental results, obtained on both public and private datasets, show the effectiveness of our solution in the disorder detection and classification tasks and largely improve over existing approaches.
Self-supervised Interpretable Concept-based Models for Text Classification
De Santis, Francesco, Bich, Philippe, Ciravegna, Gabriele, Barbiero, Pietro, Giordano, Danilo, Cerquitelli, Tania
Despite their success, Large-Language Models (LLMs) still face criticism as their lack of interpretability limits their controllability and reliability. Traditional post-hoc interpretation methods, based on attention and gradient-based analysis, offer limited insight into the model's decision-making processes. In the image field, Concept-based models have emerged as explainable-by-design architectures, employing human-interpretable features as intermediate representations. However, these methods have not been yet adapted to textual data, mainly because they require expensive concept annotations, which are impractical for real-world text data. This paper addresses this challenge by proposing a self-supervised Interpretable Concept Embedding Models (ICEMs). We leverage the generalization abilities of LLMs to predict the concepts labels in a self-supervised way, while we deliver the final predictions with an interpretable function. The results of our experiments show that ICEMs can be trained in a self-supervised way achieving similar performance to fully supervised concept-based models and end-to-end black-box ones. Additionally, we show that our models are (i) interpretable, offering meaningful logical explanations for their predictions; (ii) interactable, allowing humans to modify intermediate predictions through concept interventions; and (iii) controllable, guiding the LLMs' decoding process to follow a required decision-making path.
Concept-based Explainable Artificial Intelligence: A Survey
Poeta, Eleonora, Ciravegna, Gabriele, Pastor, Eliana, Cerquitelli, Tania, Baralis, Elena
The field of explainable artificial intelligence emerged in response to the growing need for more transparent and reliable models. However, using raw features to provide explanations has been disputed in several works lately, advocating for more user-understandable explanations. To address this issue, a wide range of papers proposing Concept-based eXplainable Artificial Intelligence (C-XAI) methods have arisen in recent years. Nevertheless, a unified categorization and precise field definition are still missing. This paper fills the gap by offering a thorough review of C-XAI approaches. We define and identify different concepts and explanation types. We provide a taxonomy identifying nine categories and propose guidelines for selecting a suitable category based on the development context. Additionally, we report common evaluation strategies including metrics, human evaluations and dataset employed, aiming to assist the development of future methods. We believe this survey will serve researchers, practitioners, and domain experts in comprehending and advancing this innovative field.
Relational Concept Based Models
Barbiero, Pietro, Giannini, Francesco, Ciravegna, Gabriele, Diligenti, Michelangelo, Marra, Giuseppe
The design of interpretable deep learning models working in relational domains poses an open challenge: interpretable deep learning methods, such as Concept-Based Models (CBMs), are not designed to solve relational problems, while relational models are not as interpretable as CBMs. To address this problem, we propose Relational Concept-Based Models, a family of relational deep learning methods providing interpretable task predictions. Our experiments, ranging from image classification to link prediction in knowledge graphs, show that relational CBMs (i) match generalization performance of existing relational black-boxes (as opposed to non-relational CBMs), (ii) support the generation of quantified concept-based explanations, (iii) effectively respond to test-time interventions, and (iv) withstand demanding settings including out-of-distribution scenarios, limited training data regimes, and scarce concept supervisions.
Interpretable Neural-Symbolic Concept Reasoning
Barbiero, Pietro, Ciravegna, Gabriele, Giannini, Francesco, Zarlenga, Mateo Espinosa, Magister, Lucie Charlotte, Tonda, Alberto, Lio', Pietro, Precioso, Frederic, Jamnik, Mateja, Marra, Giuseppe
Deep learning methods are highly accurate, yet their opaque decision process prevents them from earning full human trust. Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts. However, state-of-the-art concept-based models rely on high-dimensional concept embedding representations which lack a clear semantic meaning, thus questioning the interpretability of their decision process. To overcome this limitation, we propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings. In DCR, neural networks do not make task predictions directly, but they build syntactic rule structures using concept embeddings. DCR then executes these rules on meaningful concept truth degrees to provide a final interpretable and semantically-consistent prediction in a differentiable manner. Our experiments show that DCR: (i) improves up to +25% w.r.t. state-of-the-art interpretable concept-based models on challenging benchmarks (ii) discovers meaningful logic rules matching known ground truths even in the absence of concept supervision during training, and (iii), facilitates the generation of counterfactual examples providing the learnt rules as guidance.
Extending Logic Explained Networks to Text Classification
Jain, Rishabh, Ciravegna, Gabriele, Barbiero, Pietro, Giannini, Francesco, Buffelli, Davide, Lio, Pietro
Recently, Logic Explained Networks (LENs) have been proposed as explainable-by-design neural models providing logic explanations for their predictions. However, these models have only been applied to vision and tabular data, and they mostly favour the generation of global explanations, while local ones tend to be noisy and verbose. For these reasons, we propose LENp, improving local explanations by perturbing input words, and we test it on text classification. Our results show that (i) LENp provides better local explanations than LIME in terms of sensitivity and faithfulness, and (ii) logic explanations are more useful and user-friendly than feature scoring provided by LIME as attested by a human survey.
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
Zarlenga, Mateo Espinosa, Barbiero, Pietro, Ciravegna, Gabriele, Marra, Giuseppe, Giannini, Francesco, Diligenti, Michelangelo, Shams, Zohreh, Precioso, Frederic, Melacci, Stefano, Weller, Adrian, Lio, Pietro, Jamnik, Mateja
Deploying AI-powered systems requires trustworthy models supporting effective human interactions, going beyond raw prediction accuracy. Concept bottleneck models promote trustworthiness by conditioning classification tasks on an intermediate level of human-like concepts. This enables human interventions which can correct mispredicted concepts to improve the model's performance. However, existing concept bottleneck models are unable to find optimal compromises between high task accuracy, robust concept-based explanations, and effective interventions on concepts -- particularly in real-world conditions where complete and accurate concept supervisions are scarce. To address this, we propose Concept Embedding Models, a novel family of concept bottleneck models which goes beyond the current accuracy-vs-interpretability trade-off by learning interpretable high-dimensional concept representations. Our experiments demonstrate that Concept Embedding Models (1) attain better or competitive task accuracy w.r.t. standard neural models without concepts, (2) provide concept representations capturing meaningful semantics including and beyond their ground truth labels, (3) support test-time concept interventions whose effect in test accuracy surpasses that in standard concept bottleneck models, and (4) scale to real-world conditions where complete concept supervisions are scarce.
Knowledge-driven Active Learning
Ciravegna, Gabriele, Precioso, Frederic, Gori, Marco
In the last few years, Deep Learning models have become increasingly popular. However, their deployment is still precluded in those contexts where the amount of supervised data is limited and manual labelling expensive. Active learning strategies aim at solving this problem by requiring supervision only on few unlabelled samples, which improve the most model performances after adding them to the training set. Most strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary. Here we propose a very different approach, taking into consideration domain knowledge. Indeed, in the case of multi-label classification, the relationships among classes offer a way to spot incoherent predictions, i.e., predictions where the model may most likely need supervision. We have developed a framework where first-order-logic knowledge is converted into constraints and their violation is checked as a natural guide for sample selection. We empirically demonstrate that knowledge-driven strategy outperforms standard strategies, particularly on those datasets where domain knowledge is complete. Furthermore, we show how the proposed approach enables discovering data distributions lying far from training data. Finally, the proposed knowledge-driven strategy can be also easily used in object-detection problems where standard uncertainty-based techniques are difficult to apply.
Logic Explained Networks
Ciravegna, Gabriele, Barbiero, Pietro, Giannini, Francesco, Gori, Marco, Lió, Pietro, Maggini, Marco, Melacci, Stefano
The large and still increasing popularity of deep learning clashes with a major limit of neural network architectures, that consists in their lack of capability in providing human-understandable motivations of their decisions. In situations in which the machine is expected to support the decision of human experts, providing a comprehensible explanation is a feature of crucial importance. The language used to communicate the explanations must be formal enough to be implementable in a machine and friendly enough to be understandable by a wide audience. In this paper, we propose a general approach to Explainable Artificial Intelligence in the case of neural architectures, showing how a mindful design of the networks leads to a family of interpretable deep learning models called Logic Explained Networks (LENs). LENs only require their inputs to be human-understandable predicates, and they provide explanations in terms of simple First-Order Logic (FOL) formulas involving such predicates. LENs are general enough to cover a large number of scenarios. Amongst them, we consider the case in which LENs are directly used as special classifiers with the capability of being explainable, or when they act as additional networks with the role of creating the conditions for making a black-box classifier explainable by FOL formulas. Despite supervised learning problems are mostly emphasized, we also show that LENs can learn and provide explanations in unsupervised learning settings. Experimental results on several datasets and tasks show that LENs may yield better classifications than established white-box models, such as decision trees and Bayesian rule lists, while providing more compact and meaningful explanations.