Goto

Collaborating Authors

 Cinà, Antonio Emanuele


The Hammer and the Nut: Is Bilevel Optimization Really Needed to Poison Linear Classifiers?

arXiv.org Artificial Intelligence

One of the most concerning threats for modern AI systems is data poisoning, where the attacker injects maliciously crafted training data to corrupt the system's behavior at test time. Availability poisoning is a particularly worrisome subset of poisoning attacks where the attacker aims to cause a Denial-of-Service (DoS) attack. However, the state-of-the-art algorithms are computationally expensive because they try to solve a complex bi-level optimization problem (the "hammer"). We observed that in particular conditions, namely, where the target model is linear (the "nut"), the usage of computationally costly procedures can be avoided. We propose a counter-intuitive but efficient heuristic that allows contaminating the training set such that the target system's performance is highly compromised. We further suggest a re-parameterization trick to decrease the number of variables to be optimized. Finally, we demonstrate that, under the considered settings, our framework achieves comparable, or even better, performances in terms of the attacker's objective while being significantly more computationally efficient.


A Black-box Adversarial Attack for Poisoning Clustering

arXiv.org Machine Learning

Clustering algorithms play a fundamental role as tools in decision-making and sensible automation processes. Due to the widespread use of these applications, a robustness analysis of this family of algorithms against adversarial noise has become imperative. To the best of our knowledge, however, only a few works have currently addressed this problem. In an attempt to fill this gap, in this work, we propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms. We formulate the problem as a constrained minimization program, general in its structure and customizable by the attacker according to her capability constraints. We do not assume any information about the internal structure of the victim clustering algorithm, and we allow the attacker to query it as a service only. In the absence of any derivative information, we perform the optimization with a custom approach inspired by the Abstract Genetic Algorithm (AGA). In the experimental part, we demonstrate the sensibility of different single and ensemble clustering algorithms against our crafted adversarial samples on different scenarios. Furthermore, we perform a comparison of our algorithm with a state-of-the-art approach showing that we are able to reach or even outperform its performance. Finally, to highlight the general nature of the generated noise, we show that our attacks are transferable even against supervised algorithms such as SVMs, random forests and neural networks.