Goto

Collaborating Authors

 Cichocki, Andrzej


Semiparametric Approach to Multichannel Blind Deconvolution of Nonminimum Phase Systems

Neural Information Processing Systems

In this paper we discuss the semiparametric statistical model for blind deconvolution. First we introduce a Lie Group to the manifold of noncausal FIRfilters. Then blind deconvolution problem is formulated in the framework of a semiparametric model, and a family of estimating functions is derived for blind deconvolution. A natural gradient learning algorithmis developed for training noncausal filters. Stability of the natural gradient algorithm is also analyzed in this framework.


Semiparametric Approach to Multichannel Blind Deconvolution of Nonminimum Phase Systems

Neural Information Processing Systems

In this paper we discuss the semi parametric statistical model for blind deconvolution. First we introduce a Lie Group to the manifold of noncausal FIR filters. Then blind deconvolution problem is formulated in the framework of a semiparametric model, and a family of estimating functions is derived for blind deconvolution. A natural gradient learning algorithm is developed for training noncausal filters. Stability of the natural gradient algorithm is also analyzed in this framework.


Blind Separation of Filtered Sources Using State-Space Approach

Neural Information Processing Systems

In this paper we present a novel approach to multichannel blind that both mixingseparation/generalized deconvolution, assuming and demixing models are described by stable linear state-space systems. Based on the minimization of Kullback-Leibler Divergence, we develop a novel learning algorithm to train the matrices in the output equation. To estimate the state of the demixing model, we introduce a new concept, called to numerically implement the Kalman filter.hidden Referany priori knowledge of to review papers [lJ and [5J for the current state of theory and methods in the field. There are several reasons why as blind deconvolution models.


Blind Separation of Filtered Sources Using State-Space Approach

Neural Information Processing Systems

In this paper we present a novel approach to multichannel blind separation/generalized deconvolution, assuming that both mixing and demixing models are described by stable linear state-space systems. Based on the minimization of Kullback-Leibler Divergence, we develop a novel learning algorithm to train the matrices in the output equation. To estimate the state of the demixing model, we introduce a new concept, called hidden innovation, to numerically implement the Kalman filter. Computer simulations are given to show the validity and high effectiveness of the state-space approach. The blind source separation problem is to recover independent sources from sensor outputs without assuming any priori knowledge of the original signals besides certain statistic features.


A New Learning Algorithm for Blind Signal Separation

Neural Information Processing Systems

A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural network like model. The validity of the new learning algorithm are verified by computer simulations.


A New Learning Algorithm for Blind Signal Separation

Neural Information Processing Systems

A new online learning algorithm which minimizes a statistical dependency amongoutputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI)of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural network like model. The validity of the new learning algorithm are verified by computer simulations.


A New Learning Algorithm for Blind Signal Separation

Neural Information Processing Systems

A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural network like model. The validity of the new learning algorithm are verified by computer simulations.