Chuang, Yung-Sung
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
Chuang, Yung-Sung, Xie, Yujia, Luo, Hongyin, Kim, Yoon, Glass, James, He, Pengcheng
Despite their impressive capabilities, large language models (LLMs) are prone to hallucinations, i.e., generating content that deviates from facts seen during pretraining. We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs that does not require conditioning on retrieved external knowledge nor additional fine-tuning. Our approach obtains the next-token distribution by contrasting the differences in logits obtained from projecting the later layers versus earlier layers to the vocabulary space, exploiting the fact that factual knowledge in an LLMs has generally been shown to be localized to particular transformer layers. We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts. DoLa consistently improves the truthfulness across multiple choices tasks and open-ended generation tasks, for example improving the performance of LLaMA family models on TruthfulQA by 12-17% absolute points, demonstrating its potential in making LLMs reliably generate truthful facts.
SAIL: Search-Augmented Instruction Learning
Luo, Hongyin, Chuang, Yung-Sung, Gong, Yuan, Zhang, Tianhua, Kim, Yoon, Wu, Xixin, Fox, Danny, Meng, Helen, Glass, James
Large language models (LLMs) have been significantly improved by instruction fine-tuning, but still lack transparency and the ability to utilize up-to-date knowledge and information. In this work, we propose search-augmented instruction learning (SAIL), which grounds the language generation and instruction following abilities on complex search results generated by in-house and external search engines. With an instruction tuning corpus, we collect search results for each training case from different search APIs and domains, and construct a new search-grounded training set containing \textit{(instruction, grounding information, response)} triplets. We then fine-tune the LLaMA-7B model on the constructed training set. Since the collected results contain unrelated and disputing languages, the model needs to learn to ground on trustworthy search results, filter out distracting passages, and generate the target response. The search result-denoising process entails explicit trustworthy information selection and multi-hop reasoning, since the retrieved passages might be informative but not contain the instruction-following answer. Experiments show that the fine-tuned SAIL-7B model has a strong instruction-following ability, and it performs significantly better on transparency-sensitive tasks, including open-ended question answering and fact checking.
Revealing the Blind Spot of Sentence Encoder Evaluation by HEROS
Chiang, Cheng-Han, Chuang, Yung-Sung, Glass, James, Lee, Hung-yi
Existing sentence textual similarity benchmark datasets only use a single number to summarize how similar the sentence encoder's decision is to humans'. However, it is unclear what kind of sentence pairs a sentence encoder (SE) would consider similar. Moreover, existing SE benchmarks mainly consider sentence pairs with low lexical overlap, so it is unclear how the SEs behave when two sentences have high lexical overlap. We introduce a high-quality SE diagnostic dataset, HEROS. HEROS is constructed by transforming an original sentence into a new sentence based on certain rules to form a \textit{minimal pair}, and the minimal pair has high lexical overlaps. The rules include replacing a word with a synonym, an antonym, a typo, a random word, and converting the original sentence into its negation. Different rules yield different subsets of HEROS. By systematically comparing the performance of over 60 supervised and unsupervised SEs on HEROS, we reveal that most unsupervised sentence encoders are insensitive to negation. We find the datasets used to train the SE are the main determinants of what kind of sentence pairs an SE considers similar. We also show that even if two SEs have similar performance on STS benchmarks, they can have very different behavior on HEROS. Our result reveals the blind spot of traditional STS benchmarks when evaluating SEs.
Expand, Rerank, and Retrieve: Query Reranking for Open-Domain Question Answering
Chuang, Yung-Sung, Fang, Wei, Li, Shang-Wen, Yih, Wen-tau, Glass, James
We propose EAR, a query Expansion And Reranking approach for improving passage retrieval, with the application to open-domain question answering. EAR first applies a query expansion model to generate a diverse set of queries, and then uses a query reranker to select the ones that could lead to better retrieval results. Motivated by the observation that the best query expansion often is not picked by greedy decoding, EAR trains its reranker to predict the rank orders of the gold passages when issuing the expanded queries to a given retriever. By connecting better the query expansion model and retriever, EAR significantly enhances a traditional sparse retrieval method, BM25. Empirically, EAR improves top-5/20 accuracy by 3-8 and 5-10 points in in-domain and out-of-domain settings, respectively, when compared to a vanilla query expansion model, GAR, and a dense retrieval model, DPR.
C2KD: Cross-Lingual Cross-Modal Knowledge Distillation for Multilingual Text-Video Retrieval
Rouditchenko, Andrew, Chuang, Yung-Sung, Shvetsova, Nina, Thomas, Samuel, Feris, Rogerio, Kingsbury, Brian, Karlinsky, Leonid, Harwath, David, Kuehne, Hilde, Glass, James
Multilingual text-video retrieval methods have improved significantly in recent years, but the performance for other languages lags behind English. We propose a Cross-Lingual Cross-Modal Knowledge Distillation method to improve multilingual text-video retrieval. Inspired by the fact that English text-video retrieval outperforms other languages, we train a student model using input text in different languages to match the cross-modal predictions from teacher models using input text in English. We propose a cross entropy based objective which forces the distribution over the student's text-video similarity scores to be similar to those of the teacher models. We introduce a new multilingual video dataset, Multi-YouCook2, by translating the English captions in the YouCook2 video dataset to 8 other languages. Our method improves multilingual text-video retrieval performance on Multi-YouCook2 and several other datasets such as Multi-MSRVTT and VATEX. We also conducted an analysis on the effectiveness of different multilingual text models as teachers. The code, models, and dataset are available at https://github.com/roudimit/c2kd.
Interpretable Unified Language Checking
Zhang, Tianhua, Luo, Hongyin, Chuang, Yung-Sung, Fang, Wei, Gaitskell, Luc, Hartvigsen, Thomas, Wu, Xixin, Fox, Danny, Meng, Helen, Glass, James
Despite recent concerns about undesirable behaviors generated by large language models (LLMs), including non-factual, biased, and hateful language, we find LLMs are inherent multi-task language checkers based on their latent representations of natural and social knowledge. We present an interpretable, unified, language checking (UniLC) method for both human and machine-generated language that aims to check if language input is factual and fair. While fairness and fact-checking tasks have been handled separately with dedicated models, we find that LLMs can achieve high performance on a combination of fact-checking, stereotype detection, and hate speech detection tasks with a simple, few-shot, unified set of prompts. With the ``1/2-shot'' multi-task language checking method proposed in this work, the GPT3.5-turbo model outperforms fully supervised baselines on several language tasks. The simple approach and results suggest that based on strong latent knowledge representations, an LLM can be an adaptive and explainable tool for detecting misinformation, stereotypes, and hate speech.
Cleansing Jewel: A Neural Spelling Correction Model Built On Google OCR-ed Tibetan Manuscripts
Luo, Queenie, Chuang, Yung-Sung
Scholars in the humanities rely heavily on ancient manuscripts to study history, religion, and socio-political structures in the past. Many efforts have been devoted to digitizing these precious manuscripts using OCR technology, but most manuscripts were blemished over the centuries so that an Optical Character Recognition (OCR) program cannot be expected to capture faded graphs and stains on pages. This work presents a neural spelling correction model built on Google OCR-ed Tibetan Manuscripts to auto-correct OCR-ed noisy output. This paper is divided into four sections: dataset, model architecture, training and analysis. First, we feature-engineered our raw Tibetan etext corpus into two sets of structured data frames -- a set of paired toy data and a set of paired real data. Then, we implemented a Confidence Score mechanism into the Transformer architecture to perform spelling correction tasks. According to the Loss and Character Error Rate, our Transformer + Confidence score mechanism architecture proves to be superior to Transformer, LSTM-2-LSTM and GRU-2-GRU architectures. Finally, to examine the robustness of our model, we analyzed erroneous tokens, visualized Attention and Self-Attention heatmaps in our model.
Meta-learning for downstream aware and agnostic pretraining
Luo, Hongyin, Dong, Shuyan, Chuang, Yung-Sung, Li, Shang-Wen
Neural network pretraining is gaining attention due to its outstanding performance in natural language processing applications. However, pretraining usually leverages predefined task sequences to learn general linguistic clues. The lack of mechanisms in choosing proper tasks during pretraining makes the learning and knowledge encoding inefficient. We thus propose using meta-learning to select tasks that provide the most informative learning signals in each episode of pretraining. With the proposed method, we aim to achieve better efficiency in computation and memory usage for the pretraining process and resulting networks while maintaining the performance. In this preliminary work, we discuss the algorithm of the method and its two variants, downstream-aware and downstream-agnostic pretraining. Our experiment plan is also summarized, while empirical results will be shared in our future works.
Language Representation in Multilingual BERT and its applications to improve Cross-lingual Generalization
Liu, Chi-Liang, Hsu, Tsung-Yuan, Chuang, Yung-Sung, Li, Chung-Yi, Lee, Hung-yi
A token embedding in multilingual BERT (m-BERT) contains both language and semantic information. We find that representation of a language can be obtained by simply averaging the embeddings of the tokens of the language. With the language representation, we can control the output languages of multilingual BERT by manipulating the token embeddings and achieve unsupervised token translation. We further propose a computationally cheap but effective approach to improve the cross-lingual ability of m-BERT based on the observation.
Lifelong Language Knowledge Distillation
Chuang, Yung-Sung, Su, Shang-Yu, Chen, Yun-Nung
It is challenging to perform lifelong language learning (LLL) on a stream of different tasks without any performance degradation comparing to the multi-task counterparts. To address this issue, we present Lifelong Language Knowledge Distillation (L2KD), a simple but efficient method that can be easily applied to existing LLL architectures in order to mitigate the degradation. Specifically, when the LLL model is trained on a new task, we assign a teacher model to first learn the new task, and pass the knowledge to the LLL model via knowledge distillation. Therefore, the LLL model can better adapt to the new task while keeping the previously learned knowledge. Experiments show that the proposed L2KD consistently improves previous state-of-the-art models, and the degradation comparing to multi-task models in LLL tasks is well mitigated for both sequence generation and text classification tasks.