Chuang, Yu-Neng
LETA: Learning Transferable Attribution for Generic Vision Explainer
Wang, Guanchu, Chuang, Yu-Neng, Yang, Fan, Du, Mengnan, Chang, Chia-Yuan, Zhong, Shaochen, Liu, Zirui, Xu, Zhaozhuo, Zhou, Kaixiong, Cai, Xuanting, Hu, Xia
Explainable machine learning significantly improves the transparency of deep neural networks~(DNN). However, existing work is constrained to explaining the behavior of individual model predictions, and lacks the ability to transfer the explanation across various models and tasks. This limitation results in explaining various tasks being time- and resource-consuming. To address this problem, we develop a pre-trained, DNN-based, generic explainer on large-scale image datasets, and leverage its transferability to explain various vision models for downstream tasks. In particular, the pre-training of generic explainer focuses on LEarning Transferable Attribution (LETA). The transferable attribution takes advantage of the versatile output of the target backbone encoders to comprehensively encode the essential attribution for explaining various downstream tasks. LETA guides the pre-training of the generic explainer towards the transferable attribution, and introduces a rule-based adaptation of the transferable attribution for explaining downstream tasks, without the need for additional training on downstream data. Theoretical analysis demonstrates that the pre-training of LETA enables minimizing the explanation error bound aligned with the conditional $\mathcal{V}$-information on downstream tasks. Empirical studies involve explaining three different architectures of vision models across three diverse downstream datasets. The experiment results indicate LETA is effective in explaining these tasks without the need for additional training on the data of downstream tasks.
DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research
Chuang, Yu-Neng, Wang, Guanchu, Chang, Chia-Yuan, Lai, Kwei-Herng, Zha, Daochen, Tang, Ruixiang, Yang, Fan, Reyes, Alfredo Costilla, Zhou, Kaixiong, Jiang, Xiaoqian, Hu, Xia
The exponential growth in scholarly publications necessitates advanced tools for efficient article retrieval, especially in interdisciplinary fields where diverse terminologies are used to describe similar research. Traditional keyword-based search engines often fall short in assisting users who may not be familiar with specific terminologies. To address this, we present a knowledge graph-based paper search engine for biomedical research to enhance the user experience in discovering relevant queries and articles. The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG. To reduce information overload, DiscoverPath presents users with a focused subgraph containing the queried entity and its neighboring nodes and incorporates a query recommendation system, enabling users to iteratively refine their queries. The system is equipped with an accessible Graphical User Interface that provides an intuitive visualization of the KG, query recommendations, and detailed article information, enabling efficient article retrieval, thus fostering interdisciplinary knowledge exploration. DiscoverPath is open-sourced at https://github.com/ynchuang/DiscoverPath.
CODA: Temporal Domain Generalization via Concept Drift Simulator
Chang, Chia-Yuan, Chuang, Yu-Neng, Jiang, Zhimeng, Lai, Kwei-Herng, Jiang, Anxiao, Zou, Na
In real-world applications, machine learning models often become obsolete due to shifts in the joint distribution arising from underlying temporal trends, a phenomenon known as the "concept drift". Existing works propose model-specific strategies to achieve temporal generalization in the near-future domain. However, the diverse characteristics of real-world datasets necessitate customized prediction model architectures. To this end, there is an urgent demand for a model-agnostic temporal domain generalization approach that maintains generality across diverse data modalities and architectures. In this work, we aim to address the concept drift problem from a data-centric perspective to bypass considering the interaction between data and model. Developing such a framework presents non-trivial challenges: (i) existing generative models struggle to generate out-of-distribution future data, and (ii) precisely capturing the temporal trends of joint distribution along chronological source domains is computationally infeasible. To tackle the challenges, we propose the COncept Drift simulAtor (CODA) framework incorporating a predicted feature correlation matrix to simulate future data for model training. Specifically, CODA leverages feature correlations to represent data characteristics at specific time points, thereby circumventing the daunting computational costs. Experimental results demonstrate that using CODA-generated data as training input effectively achieves temporal domain generalization across different model architectures.
SPeC: A Soft Prompt-Based Calibration on Performance Variability of Large Language Model in Clinical Notes Summarization
Chuang, Yu-Neng, Tang, Ruixiang, Jiang, Xiaoqian, Hu, Xia
Electronic health records (EHRs) store an extensive array of patient information, encompassing medical histories, diagnoses, treatments, and test outcomes. These records are crucial for enabling healthcare providers to make well-informed decisions regarding patient care. Summarizing clinical notes further assists healthcare professionals in pinpointing potential health risks and making better-informed decisions. This process contributes to reducing errors and enhancing patient outcomes by ensuring providers have access to the most pertinent and current patient data. Recent research has shown that incorporating prompts with large language models (LLMs) substantially boosts the efficacy of summarization tasks. However, we show that this approach also leads to increased output variance, resulting in notably divergent outputs even when prompts share similar meanings. To tackle this challenge, we introduce a model-agnostic Soft Prompt-Based Calibration (SPeC) pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization. Experimental findings on multiple clinical note tasks and LLMs indicate that our method not only bolsters performance but also effectively curbs variance for various LLMs, providing a more uniform and dependable solution for summarizing vital medical information.
DISPEL: Domain Generalization via Domain-Specific Liberating
Chang, Chia-Yuan, Chuang, Yu-Neng, Wang, Guanchu, Du, Mengnan, Zou, Na
Domain generalization aims to learn a generalization model that can perform well on unseen test domains by only training on limited source domains. However, existing domain generalization approaches often bring in prediction-irrelevant noise or require the collection of domain labels. To address these challenges, we consider the domain generalization problem from a different perspective by categorizing underlying feature groups into domain-shared and domain-specific features. Nevertheless, the domain-specific features are difficult to be identified and distinguished from the input data. In this work, we propose DomaIn-SPEcific Liberating (DISPEL), a post-processing fine-grained masking approach that can filter out undefined and indistinguishable domain-specific features in the embedding space. Specifically, DISPEL utilizes a mask generator that produces a unique mask for each input data to filter domain-specific features. The DISPEL framework is highly flexible to be applied to any fine-tuned models. We derive a generalization error bound to guarantee the generalization performance by optimizing a designed objective loss. The experimental results on five benchmarks demonstrate DISPEL outperforms existing methods and can further generalize various algorithms.
Towards Assumption-free Bias Mitigation
Chang, Chia-Yuan, Chuang, Yu-Neng, Lai, Kwei-Herng, Han, Xiaotian, Hu, Xia, Zou, Na
Despite the impressive prediction ability, machine learning models show discrimination towards certain demographics and suffer from unfair prediction behaviors. To alleviate the discrimination, extensive studies focus on eliminating the unequal distribution of sensitive attributes via multiple approaches. However, due to privacy concerns, sensitive attributes are often either unavailable or missing in real-world scenarios. Therefore, several existing works alleviate the bias without sensitive attributes. Those studies face challenges, either in inaccurate predictions of sensitive attributes or the need to mitigate unequal distribution of manually defined non-sensitive attributes related to bias. The latter requires strong assumptions about the correlation between sensitive and non-sensitive attributes. As data distribution and task goals vary, the strong assumption on non-sensitive attributes may not be valid and require domain expertise. In this work, we propose an assumption-free framework to detect the related attributes automatically by modeling feature interaction for bias mitigation. The proposed framework aims to mitigate the unfair impact of identified biased feature interactions. Experimental results on four real-world datasets demonstrate that our proposed framework can significantly alleviate unfair prediction behaviors by considering biased feature interactions.
The Science of Detecting LLM-Generated Texts
Tang, Ruixiang, Chuang, Yu-Neng, Hu, Xia
The emergence of large language models (LLMs) has resulted in the production of LLM-generated texts that is highly sophisticated and almost indistinguishable from texts written by humans. However, this has also sparked concerns about the potential misuse of such texts, such as spreading misinformation and causing disruptions in the education system. Although many detection approaches have been proposed, a comprehensive understanding of the achievements and challenges is still lacking. This survey aims to provide an overview of existing LLM-generated text detection techniques and enhance the control and regulation of language generation models. Furthermore, we emphasize crucial considerations for future research, including the development of comprehensive evaluation metrics and the threat posed by open-source LLMs, to drive progress in the area of LLM-generated text detection.
Accelerating Shapley Explanation via Contributive Cooperator Selection
Wang, Guanchu, Chuang, Yu-Neng, Du, Mengnan, Yang, Fan, Zhou, Quan, Tripathi, Pushkar, Cai, Xuanting, Hu, Xia
Even though Shapley value provides an effective explanation for a DNN model prediction, the computation relies on the enumeration of all possible input feature coalitions, which leads to the exponentially growing complexity. To address this problem, we propose a novel method SHEAR to significantly accelerate the Shapley explanation for DNN models, where only a few coalitions of input features are involved in the computation. The selection of the feature coalitions follows our proposed Shapley chain rule to minimize the absolute error from the ground-truth Shapley values, such that the computation can be both efficient and accurate. To demonstrate the effectiveness, we comprehensively evaluate SHEAR across multiple metrics including the absolute error from the ground-truth Shapley value, the faithfulness of the explanations, and running speed. The experimental results indicate SHEAR consistently outperforms state-of-the-art baseline methods across different evaluation metrics, which demonstrates its potentials in real-world applications where the computational resource is limited.
CoRTX: Contrastive Framework for Real-time Explanation
Chuang, Yu-Neng, Wang, Guanchu, Yang, Fan, Zhou, Quan, Tripathi, Pushkar, Cai, Xuanting, Hu, Xia
Recent advancements in explainable machine learning provide effective and faithful solutions for interpreting model behaviors. However, many explanation methods encounter efficiency issues, which largely limit their deployments in practical scenarios. Real-time explainer (RTX) frameworks have thus been proposed to accelerate the model explanation process by learning a one-feed-forward explainer. Existing RTX frameworks typically build the explainer under the supervised learning paradigm, which requires large amounts of explanation labels as the ground truth. Considering that accurate explanation labels are usually hard to obtain due to constrained computational resources and limited human efforts, effective explainer training is still challenging in practice. In this work, we propose a COntrastive Real-Time eXplanation (CoRTX) framework to learn the explanation-oriented representation and relieve the intensive dependence of explainer training on explanation labels. Specifically, we design a synthetic strategy to select positive and negative instances for the learning of explanation. Theoretical analysis show that our selection strategy can benefit the contrastive learning process on explanation tasks. Experimental results on three real-world datasets further demonstrate the efficiency and efficacy of our proposed CoRTX framework.
Efficient XAI Techniques: A Taxonomic Survey
Chuang, Yu-Neng, Wang, Guanchu, Yang, Fan, Liu, Zirui, Cai, Xuanting, Du, Mengnan, Hu, Xia
Abstract--Recently, there has been a growing demand for the deployment of Explainable Artificial Intelligence (XAI) algorithms in real-world applications. However, traditional XAI methods typically suffer from a high computational complexity problem, which discourages the deployment of real-time systems to meet the time-demanding requirements of real-world scenarios. Although many approaches have been proposed to improve the efficiency of XAI methods, a comprehensive understanding of the achievements and challenges is still needed. To this end, in this paper we provide a review of efficient XAI. The efficient non-amortized methods focus on data-centric or model-centric acceleration upon each individual instance. In contrast, amortized methods focus on learning a unified distribution of model explanations, following the predictive, generative, or reinforcement frameworks, to rapidly derive multiple model explanations. We also analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios. Finally, we summarize the challenges of deploying XAI acceleration methods to real-world scenarios, overcoming the trade-off between faithfulness and efficiency, and the selection of different acceleration methods. Despite the advancements in ML, providing instance requires a unique explainer during the derivation transparency in the models, particularly in deep neural of the explanation. In addition, the local explanation suffers networks (DNNs), remains a substantial challenge. The lack from extensive computational conditions due to the pending of transparency can lead to mistrust and skepticism of ML amounts of tested instances, where each instance requires model predictions, such as the block-box driving decisions massive permutation times to complete the importance score made by autopilots.