Goto

Collaborating Authors

 Chu, Zhixuan


Trustworthy Representation Learning Across Domains

arXiv.org Artificial Intelligence

As AI systems have obtained significant performance to be deployed widely in our daily live and human society, people both enjoy the benefits brought by these technologies and suffer many social issues induced by these systems. To make AI systems good enough and trustworthy, plenty of researches have been done to build guidelines for trustworthy AI systems. Machine learning is one of the most important parts for AI systems and representation learning is the fundamental technology in machine learning. How to make the representation learning trustworthy in real-world application, e.g., cross domain scenarios, is very valuable and necessary for both machine learning and AI system fields. Inspired by the concepts in trustworthy AI, we proposed the first trustworthy representation learning across domains framework which includes four concepts, i.e, robustness, privacy, fairness, and explainability, to give a comprehensive literature review on this research direction. Specifically, we first introduce the details of the proposed trustworthy framework for representation learning across domains. Second, we provide basic notions and comprehensively summarize existing methods for the trustworthy framework from four concepts. Finally, we conclude this survey with insights and discussions on future research directions.


Continual Learning in Predictive Autoscaling

arXiv.org Artificial Intelligence

Predictive Autoscaling is used to forecast the workloads of servers and prepare the resources in advance to ensure service level objectives (SLOs) in dynamic cloud environments. However, in practice, its prediction task often suffers from performance degradation under abnormal traffics caused by external events (such as sales promotional activities and applications re-configurations), for which a common solution is to re-train the model with data of a long historical period, but at the expense of high computational and storage costs. To better address this problem, we propose a replay-based continual learning method, i.e., Density-based Memory Selection and Hint-based Network Learning Model (DMSHM), using only a small part of the historical log to achieve accurate predictions. First, we discover the phenomenon of sample overlap when applying replay-based continual learning in prediction tasks. In order to surmount this challenge and effectively integrate new sample distribution, we propose a density-based sample selection strategy that utilizes kernel density estimation to calculate sample density as a reference to compute sample weight, and employs weight sampling to construct a new memory set. Then we implement hint-based network learning based on hint representation to optimize the parameters. Finally, we conduct experiments on public and industrial datasets to demonstrate that our proposed method outperforms state-of-the-art continual learning methods in terms of memory capacity and prediction accuracy. Furthermore, we demonstrate remarkable practicability of DMSHM in real industrial applications.


EasyTPP: Towards Open Benchmarking the Temporal Point Processes

arXiv.org Artificial Intelligence

Continuous-time event sequences play a vital role in real-world domains such as healthcare, finance, online shopping, social networks, and so on. To model such data, temporal point processes (TPPs) have emerged as the most advanced generative models, making a significant impact in both academic and application communities. Despite the emergence of many powerful models in recent years, there is still no comprehensive benchmark to evaluate them. This lack of standardization impedes researchers and practitioners from comparing methods and reproducing results, potentially slowing down progress in this field. In this paper, we present EasyTPP, which aims to establish a central benchmark for evaluating TPPs. Compared to previous work that also contributed datasets, our EasyTPP has three unique contributions to the community: (i) a comprehensive implementation of eight highly cited neural TPPs with the integration of commonly used evaluation metrics and datasets; (ii) a standardized benchmarking pipeline for a transparent and thorough comparison of different methods on different datasets; (iii) a universal framework supporting multiple ML libraries (e.g., PyTorch and TensorFlow) as well as custom implementations. Our benchmark is open-sourced: all the data and implementation can be found at this \href{https://github.com/ant-research/EasyTemporalPointProcess}{\textcolor{blue}{Github repository}}\footnote{\url{https://github.com/ant-research/EasyTemporalPointProcess}.}. We will actively maintain this benchmark and welcome contributions from other researchers and practitioners. Our benchmark will help promote reproducible research in this field, thus accelerating research progress as well as making more significant real-world impacts.


Continual Causal Effect Estimation: Challenges and Opportunities

arXiv.org Artificial Intelligence

A further understanding of cause and effect within observational data is critical across many domains, such as economics, health care, public policy, web mining, online advertising, and marketing campaigns. Although significant advances have been made to overcome the challenges in causal effect estimation with observational data, such as missing counterfactual outcomes and selection bias between treatment and control groups, the existing methods mainly focus on source-specific and stationary observational data. Such learning strategies assume that all observational data are already available during the training phase and from only one source. This practical concern of accessibility is ubiquitous in various academic and industrial applications. That's what it boiled down to: in the era of big data, we face new challenges in causal inference with observational data, i.e., the extensibility for incrementally available observational data, the adaptability for extra domain adaptation problem except for the imbalance between treatment and control groups, and the accessibility for an enormous amount of data. In this position paper, we formally define the problem of continual treatment effect estimation, describe its research challenges, and then present possible solutions to this problem. Moreover, we will discuss future research directions on this topic.


Continual Causal Inference with Incremental Observational Data

arXiv.org Artificial Intelligence

The era of big data has witnessed an increasing availability of observational data from mobile and social networking, online advertising, web mining, healthcare, education, public policy, marketing campaigns, and so on, which facilitates the development of causal effect estimation. Although significant advances have been made to overcome the challenges in the academic area, such as missing counterfactual outcomes and selection bias, they only focus on source-specific and stationary observational data, which is unrealistic in most industrial applications. In this paper, we investigate a new industrial problem of causal effect estimation from incrementally available observational data and present three new evaluation criteria accordingly, including extensibility, adaptability, and accessibility. We propose a Continual Causal Effect Representation Learning method for estimating causal effects with observational data, which are incrementally available from non-stationary data distributions. Instead of having access to all seen observational data, our method only stores a limited subset of feature representations learned from previous data. Combining selective and balanced representation learning, feature representation distillation, and feature transformation, our method achieves the continual causal effect estimation for new data without compromising the estimation capability for original data. Extensive experiments demonstrate the significance of continual causal effect estimation and the effectiveness of our method.


Causal Effect Estimation: Recent Advances, Challenges, and Opportunities

arXiv.org Artificial Intelligence

Causal inference has numerous real-world applications in many domains, such as health care, marketing, political science, and online advertising. Treatment effect estimation, a fundamental problem in causal inference, has been extensively studied in statistics for decades. However, traditional treatment effect estimation methods may not well handle large-scale and high-dimensional heterogeneous data. In recent years, an emerging research direction has attracted increasing attention in the broad artificial intelligence field, which combines the advantages of traditional treatment effect estimation approaches (e.g., propensity score, matching, and reweighing) and advanced machine learning approaches (e.g., representation learning, adversarial learning, and graph neural networks). Although the advanced machine learning approaches have shown extraordinary performance in treatment effect estimation, it also comes with a lot of new topics and new research questions. In view of the latest research efforts in the causal inference field, we provide a comprehensive discussion of challenges and opportunities for the three core components of the treatment effect estimation task, i.e., treatment, covariates, and outcome. In addition, we showcase the promising research directions of this topic from multiple perspectives.


Matching in Selective and Balanced Representation Space for Treatment Effects Estimation

arXiv.org Machine Learning

The dramatically growing availability of observational data is being witnessed in various domains of science and technology, which facilitates the study of causal inference. However, estimating treatment effects from observational data is faced with two major challenges, missing counterfactual outcomes and treatment selection bias. Matching methods are among the most widely used and fundamental approaches to estimating treatment effects, but existing matching methods have poor performance when facing data with high dimensional and complicated variables. We propose a feature selection representation matching (FSRM) method based on deep representation learning and matching, which maps the original covariate space into a selective, nonlinear, and balanced representation space, and then conducts matching in the learned representation space. FSRM adopts deep feature selection to minimize the influence of irrelevant variables for estimating treatment effects and incorporates a regularizer based on the Wasserstein distance to learn balanced representations. We evaluate the performance of our FSRM method on three datasets, and the results demonstrate superiority over the state-of-the-art methods.