Goto

Collaborating Authors

 Chu, Yunfei


TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning

arXiv.org Artificial Intelligence

Dynamic graph modeling has recently attracted much attention due to its extensive applications in many real-world scenarios, such as recommendation systems, financial transactions, and social networks. Although many works have been proposed for dynamic graph modeling in recent years, effective and scalable models are yet to be developed. In this paper, we propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion and enables effective dynamic node representation learning that captures both the temporal and topology information. Technically, our model contains three novel aspects. First, we generalize the vanilla Transformer to temporal graph learning scenarios and design a graph-topology-aware transformer. Secondly, on top of the proposed graph transformer, we introduce a two-stream encoder that separately extracts representations from temporal neighborhoods associated with the two interaction nodes and then utilizes a co-attentional transformer to model inter-dependencies at a semantic level. Lastly, we are inspired by the recently developed contrastive learning and propose to optimize our model by maximizing mutual information (MI) between the predictive representations of two future interaction nodes. Benefiting from this, our dynamic representations can preserve high-level (or global) semantics about interactions and thus is robust to noisy interactions. To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs. We evaluate our model on four benchmark datasets for interaction prediction and experiment results demonstrate the superiority of our model.


Inductive Granger Causal Modeling for Multivariate Time Series

arXiv.org Machine Learning

Granger causal modeling is an emerging topic that can uncover Granger causal relationship behind multivariate time series data. In many real-world systems, it is common to encounter a large amount of multivariate time series data collected from different individuals with sharing commonalities. However, there are ongoing concerns regarding Granger causality's applicability in such large scale complex scenarios, presenting both challenges and opportunities for Granger causal structure reconstruction. Existing methods usually train a distinct model for each individual, suffering from inefficiency and over-fitting issues. To bridge this gap, we propose an Inductive GRanger cAusal modeling (InGRA) framework for inductive Granger causality learning and common causal structure detection on multivariate time series, which exploits the shared commonalities underlying the different individuals. In particular, we train one global model for individuals with different Granger causal structures through a novel attention mechanism, called prototypical Granger causal attention. The model can detect common causal structures for different individuals and infer Granger causal structures for newly arrived individuals. Extensive experiments, as well as an online A/B test on an E-commercial advertising platform, demonstrate the superior performances of InGRA.