Plotting

 Chu, Quentin


Mixed-curvature decision trees and random forests

arXiv.org Artificial Intelligence

Decision trees (DTs) and their random forest (RF) extensions are workhorses of classification and regression in Euclidean spaces. However, algorithms for learning in non-Euclidean spaces are still limited. We extend DT and RF algorithms to product manifolds: Cartesian products of several hyperbolic, hyperspherical, or Euclidean components. Such manifolds handle heterogeneous curvature while still factorizing neatly into simpler components, making them compelling embedding spaces for complex datasets. Our novel angular reformulation of DTs respects the geometry of the product manifold, yielding splits that are geodesically convex, maximum-margin, and composable. In the special cases of single-component manifolds, our method simplifies to its Euclidean or hyperbolic counterparts, or introduces hyperspherical DT algorithms, depending on the curvature. We benchmark our method on various classification, regression, and link prediction tasks on synthetic data, graph embeddings, mixed-curvature variational autoencoder latent spaces, and empirical data. Compared to six other classifiers, product DTs and RFs ranked first on 21 of 22 single-manifold benchmarks and 18 of 35 product manifold benchmarks, and placed in the top 2 on 53 of 57 benchmarks overall. This highlights the value of product DTs and RFs as straightforward yet powerful new tools for data analysis in product manifolds. Code for our paper is available at https://github.com/pchlenski/embedders.


Estimating the Hallucination Rate of Generative AI

arXiv.org Machine Learning

This work is about estimating the hallucination rate for in-context learning (ICL) with Generative AI. In ICL, a conditional generative model (CGM) is prompted with a dataset and asked to make a prediction based on that dataset. The Bayesian interpretation of ICL assumes that the CGM is calculating a posterior predictive distribution over an unknown Bayesian model of a latent parameter and data. With this perspective, we define a \textit{hallucination} as a generated prediction that has low-probability under the true latent parameter. We develop a new method that takes an ICL problem -- that is, a CGM, a dataset, and a prediction question -- and estimates the probability that a CGM will generate a hallucination. Our method only requires generating queries and responses from the model and evaluating its response log probability. We empirically evaluate our method on synthetic regression and natural language ICL tasks using large language models.


Mixed-Curvature Decision Trees and Random Forests

arXiv.org Artificial Intelligence

We extend decision tree and random forest algorithms to mixed-curvature product spaces. Such spaces, defined as Cartesian products of Euclidean, hyperspherical, and hyperbolic manifolds, can often embed points from pairwise distances with much lower distortion than in single manifolds. To date, all classifiers for product spaces fit a single linear decision boundary, and no regressor has been described. Our method overcomes these limitations by enabling simple, expressive classification and regression in product manifolds. We demonstrate the superior accuracy of our tool compared to Euclidean methods operating in the ambient space for component manifolds covering a wide range of curvatures, as well as on a selection of product manifolds.