Plotting

 Chu, Casey


GPT-4o System Card

arXiv.org Artificial Intelligence

GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.


GPT-4 Technical Report

arXiv.org Artificial Intelligence

We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.


Asymmetric self-play for automatic goal discovery in robotic manipulation

arXiv.org Artificial Intelligence

We train a single, goal-conditioned policy that can solve many robotic manipulation tasks, including tasks with previously unseen goals and objects. We rely on asymmetric self-play for goal discovery, where two agents, Alice and Bob, play a game. Alice is asked to propose challenging goals and Bob aims to solve them. We show that this method can discover highly diverse and complex goals without any human priors. Bob can be trained with only sparse rewards, because the interaction between Alice and Bob results in a natural curriculum and Bob can learn from Alice's trajectory when relabeled as a goal-conditioned demonstration. Finally, our method scales, resulting in a single policy that can generalize to many unseen tasks such as setting a table, stacking blocks, and solving simple puzzles. We are motivated to train a single goal-conditioned policy (Kaelbling, 1993) that can solve any robotic manipulation task that a human may request in a given environment. In this work, we make progress towards this goal by solving a robotic manipulation problem in a tabletop setting where the robot's task is to change the initial configuration of a variable number of objects on a table to match a given goal configuration. This problem is simple in its formulation but likely to challenge a wide variety of cognitive abilities of a robot as objects become diverse and goals become complex. Motivated by the recent success of deep reinforcement learning for robotics (Levine et al., 2016; Gu et al., 2017; Hwangbo et al., 2019; OpenAI et al., 2019a), we tackle this problem using deep reinforcement learning on a very large training distribution. An open question in this approach is how we can build a training distribution rich enough to achieve generalization to many unseen manipulation tasks. This involves defining both an environment's initial state distribution and a goal distribution.


Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning

arXiv.org Machine Learning

The goal of this paper is to provide a unifying view of a wide range of problems of interest in machine learning by framing them as the minimization of functionals defined on the space of probability measures. In particular, we show that generative adversarial networks, variational inference, and actor-critic methods in reinforcement learning can all be seen through the lens of our framework. We then discuss a generic optimization algorithm for our formulation, called probability functional descent (PFD), and show how this algorithm recovers existing methods developed independently in the settings mentioned earlier.


CycleGAN, a Master of Steganography

arXiv.org Machine Learning

CycleGAN (Zhu et al. 2017) is one recent successful approach to learn a transformation between two image distributions. In a series of experiments, we demonstrate an intriguing property of the model: CycleGAN learns to "hide" information about a source image into the images it generates in a nearly imperceptible, high-frequency signal. This trick ensures that the generator can recover the original sample and thus satisfy the cyclic consistency requirement, while the generated image remains realistic. We connect this phenomenon with adversarial attacks by viewing CycleGAN's training procedure as training a generator of adversarial examples and demonstrate that the cyclic consistency loss causes CycleGAN to be especially vulnerable to adversarial attacks.