Not enough data to create a plot.
Try a different view from the menu above.
Christoph Dann
On Oracle-Efficient PAC RL with Rich Observations
Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire
We study the computational tractability of PAC reinforcement learning with rich observations. We present new provably sample-efficient algorithms for environments with deterministic hidden state dynamics and stochastic rich observations. These methods operate in an oracle model of computation--accessing policy and value function classes exclusively through standard optimization primitives--and therefore represent computationally efficient alternatives to prior algorithms that require enumeration.
Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning
Christoph Dann, Tor Lattimore, Emma Brunskill
Statistical performance bounds for reinforcement learning (RL) algorithms can be critical for high-stakes applications like healthcare. This paper introduces a new framework for theoretically measuring the performance of such algorithms called Uniform-PAC, which is a strengthening of the classical Probably Approximately Correct (PAC) framework. In contrast to the PAC framework, the uniform version may be used to derive high probability regret guarantees and so forms a bridge between the two setups that has been missing in the literature. We demonstrate the benefits of the new framework for finite-state episodic MDPs with a new algorithm that is Uniform-PAC and simultaneously achieves optimal regret and PAC guarantees except for a factor of the horizon.
Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning
Christoph Dann, Tor Lattimore, Emma Brunskill
Statistical performance bounds for reinforcement learning (RL) algorithms can be critical for high-stakes applications like healthcare. This paper introduces a new framework for theoretically measuring the performance of such algorithms called Uniform-PAC, which is a strengthening of the classical Probably Approximately Correct (PAC) framework. In contrast to the PAC framework, the uniform version may be used to derive high probability regret guarantees and so forms a bridge between the two setups that has been missing in the literature. We demonstrate the benefits of the new framework for finite-state episodic MDPs with a new algorithm that is Uniform-PAC and simultaneously achieves optimal regret and PAC guarantees except for a factor of the horizon.
On Oracle-Efficient PAC RL with Rich Observations
Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire
We study the computational tractability of PAC reinforcement learning with rich observations. We present new provably sample-efficient algorithms for environments with deterministic hidden state dynamics and stochastic rich observations. These methods operate in an oracle model of computation--accessing policy and value function classes exclusively through standard optimization primitives--and therefore represent computationally efficient alternatives to prior algorithms that require enumeration.