Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Chris J. Maddison
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
Hamiltonian descent for composite objectives
Brendan O'Donoghue, Chris J. Maddison
Hamiltonian descent for composite objectives
Brendan O'Donoghue, Chris J. Maddison
In optimization the duality gap between the primal and the dual problems is a measure of the suboptimality of any primal-dual point. In classical mechanics the equations of motion of a system can be derived from the Hamiltonian function, which is a quantity that describes the total energy of the system. In this paper we consider a convex optimization problem consisting of the sum of two convex functions, sometimes referred to as a composite objective, and we identify the duality gap to be the'energy' of the system. In the Hamiltonian formalism the energy is conserved, so we add a contractive term to the standard equations of motion so that this energy decreases linearly (i.e., geometrically) with time. This yields a continuous-time ordinary differential equation (ODE) in the primal and dual variables which converges to zero duality gap, i.e., optimality.
Filtering Variational Objectives
Chris J. Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Teh
When used as a surrogate objective for maximum likelihood estimation in latent variable models, the evidence lower bound (ELBO) produces state-of-the-art results. Inspired by this, we consider the extension of the ELBO to a family of lower bounds defined by a particle filter's estimator of the marginal likelihood, the filtering variational objectives (FIVOs). FIVOs take the same arguments as the ELBO, but can exploit a model's sequential structure to form tighter bounds. We present results that relate the tightness of FIVO's bound to the variance of the particle filter's estimator by considering the generic case of bounds defined as log-transformed likelihood estimators. Experimentally, we show that training with FIVO results in substantial improvements over training the same model architecture with the ELBO on sequential data.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, Jascha Sohl-Dickstein
Learning in models with discrete latent variables is challenging due to high variance gradient estimators. Generally, approaches have relied on control variates to reduce the variance of the REINFORCE estimator. Recent work (Jang et al., 2016; Maddison et al., 2016) has taken a different approach, introducing a continuous relaxation of discrete variables to produce low-variance, but biased, gradient estimates. In this work, we combine the two approaches through a novel control variate that produces low-variance, unbiased gradient estimates. Then, we introduce a modification to the continuous relaxation and show that the tightness of the relaxation can be adapted online, removing it as a hyperparameter. We show state-of-the-art variance reduction on several benchmark generative modeling tasks, generally leading to faster convergence to a better final log-likelihood.