Not enough data to create a plot.
Try a different view from the menu above.
Chowdhury, Somnath Basu Roy
Sustaining Fairness via Incremental Learning
Chowdhury, Somnath Basu Roy, Chaturvedi, Snigdha
Machine learning systems are often deployed for making critical decisions like credit lending, hiring, etc. While making decisions, such systems often encode the user's demographic information (like gender, age) in their intermediate representations. This can lead to decisions that are biased towards specific demographics. Prior work has focused on debiasing intermediate representations to ensure fair decisions. However, these approaches fail to remain fair with changes in the task or demographic distribution. To ensure fairness in the wild, it is important for a system to adapt to such changes as it accesses new data in an incremental fashion. In this work, we propose to address this issue by introducing the problem of learning fair representations in an incremental learning setting. To this end, we present Fairness-aware Incremental Representation Learning (FaIRL), a representation learning system that can sustain fairness while incrementally learning new tasks. FaIRL is able to achieve fairness and learn new tasks by controlling the rate-distortion function of the learned representations. Our empirical evaluations show that FaIRL is able to make fair decisions while achieving high performance on the target task, outperforming several baselines.
Learning Fair Representations via Rate-Distortion Maximization
Chowdhury, Somnath Basu Roy, Chaturvedi, Snigdha
Text representations learned by machine learning models often encode undesirable demographic information of the user. Predictive models based on these representations can rely on such information, resulting in biased decisions. We present a novel debiasing technique, Fairness-aware Rate Maximization (FaRM), that removes protected information by making representations of instances belonging to the same protected attribute class uncorrelated, using the rate-distortion function. FaRM is able to debias representations with or without a target task at hand. FaRM can also be adapted to remove information about multiple protected attributes simultaneously. Empirical evaluations show that FaRM achieves state-of-the-art performance on several datasets, and learned representations leak significantly less protected attribute information against an attack by a non-linear probing network.
Training Autoencoders in Sparse Domain
Bhattacharya, Biswarup (University of Southern California) | Ghosh, Arna (McGill University) | Chowdhury, Somnath Basu Roy (Indian Institute of Technology Kharagpur)
Autoencoders (AE) are essential in learning representation of large data (like images) for dimensionality reduction. Images are converted to sparse domain using transforms like Fast Fourier Transform (FFT) or Discrete Cosine Transform (DCT) where information that requires encoding is minimal. By optimally selecting the feature-rich frequencies, we are able to learn the latent vectors more robustly. We successfully show enhanced performance of autoencoders in sparse domain for images.
AdGAP: Advanced Global Average Pooling
Ghosh, Arna (McGill University) | Bhattacharya, Biswarup (University of Southern California) | Chowdhury, Somnath Basu Roy (Indian Institute of Technology Kharagpur)
Global average pooling (GAP) has been used previously to generate class activation maps. The motivation behind AdGAP comes from the fact that the convolutional filters possess position information of the essential features and hence, combination of the feature maps could help us locate the class instances in an image. Our novel architecture generates promising results and unlike previous methods, the architecture is not sensitive to the size of the input image, thus promising wider application.
Handwriting Profiling Using Generative Adversarial Networks
Ghosh, Arna (Indian Institute of Technology Kharagpur) | Bhattacharya, Biswarup (Indian Institute of Technology Kharagpur) | Chowdhury, Somnath Basu Roy (Indian Institute of Technology Kharagpur)
Handwriting is a skill learned by humans from a very early age. The ability to develop one’s own unique handwriting as well as mimic another person’s handwriting is a task learned by the brain with practice. This paper deals with this very problem where an intelligent system tries to learn the handwriting of an entity using Generative Adversarial Networks (GANs). We propose a modified architecture of DCGAN (Radford, Metz, and Chintala 2015) to achieve this. We also discuss about applying reinforcement learning techniques to achieve faster learning. Our algorithm hopes to give new insights in this area and its uses include identification of forged documents, signature verification, computer generated art, digitization of documents among others. Our early implementation of the algorithm illustrates a good performance with MNIST datasets.