Plotting

 Chowdhury, Sayak Ray


No-regret Algorithms for Multi-task Bayesian Optimization

arXiv.org Machine Learning

We consider multi-objective optimization (MOO) of an unknown vector-valued function in the non-parametric Bayesian optimization (BO) setting, with the aim being to learn points on the Pareto front of the objectives. Most existing BO algorithms do not model the fact that the multiple objectives, or equivalently, tasks can share similarities, and even the few that do lack rigorous, finite-time regret guarantees that capture explicitly inter-task structure. In this work, we address this problem by modelling inter-task dependencies using a multi-task kernel and develop two novel BO algorithms based on random scalarizations of the objectives. Our algorithms employ vector-valued kernel regression as a stepping stone and belong to the upper confidence bound class of algorithms. Under a smoothness assumption that the unknown vector-valued function is an element of the reproducing kernel Hilbert space associated with the multi-task kernel, we derive worst-case regret bounds for our algorithms that explicitly capture the similarities between tasks. We numerically benchmark our algorithms on both synthetic and real-life MOO problems, and show the advantages offered by learning with multi-task kernels.


Bayesian Optimization under Heavy-tailed Payoffs

arXiv.org Machine Learning

We consider black box optimization of an unknown function in the nonparametric Gaussian process setting when the noise in the observed function values can be heavy tailed. This is in contrast to existing literature that typically assumes sub-Gaussian noise distributions for queries. Under the assumption that the unknown function belongs to the Reproducing Kernel Hilbert Space (RKHS) induced by a kernel, we first show that an adaptation of the well-known GP-UCB algorithm with reward truncation enjoys sublinear $\tilde{O}(T^{\frac{2 + \alpha}{2(1+\alpha)}})$ regret even with only the $(1+\alpha)$-th moments, $\alpha \in (0,1]$, of the reward distribution being bounded ($\tilde{O}$ hides logarithmic factors). However, for the common squared exponential (SE) and Mat\'{e}rn kernels, this is seen to be significantly larger than a fundamental $\Omega(T^{\frac{1}{1+\alpha}})$ lower bound on regret. We resolve this gap by developing novel Bayesian optimization algorithms, based on kernel approximation techniques, with regret bounds matching the lower bound in order for the SE kernel. We numerically benchmark the algorithms on environments based on both synthetic models and real-world data sets.


Online Learning in Kernelized Markov Decision Processes

arXiv.org Machine Learning

We consider online learning for minimizing regret in unknown, episodic Markov decision processes (MDPs) with continuous states and actions. We develop variants of the UCRL and posterior sampling algorithms that employ nonparametric Gaussian process priors to generalize across the state and action spaces. When the transition and reward functions of the true MDP are either sampled from Gaussian process priors (fully Bayesian setting) or are members of the associated Reproducing Kernel Hilbert Spaces of functions induced by symmetric psd kernels (frequentist setting), we show that the algorithms enjoy sublinear regret bounds. The bounds are in terms of explicit structural parameters of the kernels, namely a novel generalization of the information gain metric from kernelized bandit, and highlight the influence of transition and reward function structure on the learning performance. Our results are applicable to multi-dimensional state and action spaces with composite kernel structures, and generalize results from the literature on kernelized bandits, and the adaptive control of parametric linear dynamical systems with quadratic costs.


Misspecified Linear Bandits

AAAI Conferences

We consider the problem of online learning in misspecified linear stochastic multi-armed bandit problems. Regret guarantees for state-of-the-art linear bandit algorithms such as Optimism in the Face of Uncertainty Linear bandit (OFUL) hold under the assumption that the arms expected rewards are perfectly linear in their features. It is, however, of interest to investigate the impact of potential misspecification in linear bandit models, where the expected rewards are perturbed away from the linear subspace determined by the arms features. Although OFUL has recently been shown to be robust to relatively small deviations from linearity, we show that any linear bandit algorithm that enjoys optimal regret performance in the perfectly linear setting (e.g., OFUL) must suffer linear regret under a sparse additive perturbation of the linear model. In an attempt to overcome this negative result,we define a natural class of bandit models characterized by a non-sparse deviation from linearity. We argue that the OFUL algorithm can fail to achieve sublinear regret even under models that have non-sparse deviation. We finally develop a novel bandit algorithm, comprising a hypothesis test for linearity followed by a decision to use either the OFUL or Upper Confidence Bound (UCB) algorithm. For perfectly linear bandit models, the algorithm provably exhibits OFULs favorable regret performance, while for misspecified models satisfying the non-sparse deviation property, the algorithm avoids the linear regret phenomenon and falls back on UCBs sublinear regret scaling. Numerical experiments on synthetic data, and on recommendation data from the public Yahoo! Learning toRank Challenge dataset, empirically support our findings.