Goto

Collaborating Authors

 Chowdhury, Mosharaf


FLINT: A Platform for Federated Learning Integration

arXiv.org Artificial Intelligence

Cross-device federated learning (FL) has been well-studied from algorithmic, system scalability, and training speed perspectives. Nonetheless, moving from centralized training to cross-device FL for millions or billions of devices presents many risks, including performance loss, developer inertia, poor user experience, and unexpected application failures. In addition, the corresponding infrastructure, development costs, and return on investment are difficult to estimate. In this paper, we present a device-cloud collaborative FL platform that integrates with an existing machine learning platform, providing tools to measure real-world constraints, assess infrastructure capabilities, evaluate model training performance, and estimate system resource requirements to responsibly bring FL into production. We also present a decision workflow that leverages the FL-integrated platform to comprehensively evaluate the trade-offs of cross-device FL and share our empirical evaluations of business-critical machine learning applications that impact hundreds of millions of users.


Packing Privacy Budget Efficiently

arXiv.org Artificial Intelligence

Machine learning (ML) models can leak information about users, and differential privacy (DP) provides a rigorous way to bound that leakage under a given budget. This DP budget can be regarded as a new type of compute resource in workloads of multiple ML models training on user data. Once it is used, the DP budget is forever consumed. Therefore, it is crucial to allocate it most efficiently to train as many models as possible. This paper presents the scheduler for privacy that optimizes for efficiency. We formulate privacy scheduling as a new type of multidimensional knapsack problem, called privacy knapsack, which maximizes DP budget efficiency. We show that privacy knapsack is NP-hard, hence practical algorithms are necessarily approximate. We develop an approximation algorithm for privacy knapsack, DPK, and evaluate it on microbenchmarks and on a new, synthetic private-ML workload we developed from the Alibaba ML cluster trace. We show that DPK: (1) often approaches the efficiency-optimal schedule, (2) consistently schedules more tasks compared to a state-of-the-art privacy scheduling algorithm that focused on fairness (1.3-1.7x in Alibaba, 1.0-2.6x in microbenchmarks), but (3) sacrifices some level of fairness for efficiency. Therefore, using DPK, DP ML operators should be able to train more models on the same amount of user data while offering the same privacy guarantee to their users.


Efficient DNN Training with Knowledge-Guided Layer Freezing

arXiv.org Artificial Intelligence

Training deep neural networks (DNNs) is time-consuming. While most existing solutions try to overlap/schedule computation and communication for efficient training, this paper goes one step further by skipping computing and communication through DNN layer freezing. Our key insight is that the training progress of internal DNN layers differs significantly, and front layers often become well-trained much earlier than deep layers. To explore this, we first introduce the notion of training plasticity to quantify the training progress of internal DNN layers. Then we design KGT, a knowledge-guided DNN training system that employs semantic knowledge from a reference model to accurately evaluate individual layers' training plasticity and safely freeze the converged ones, saving their corresponding backward computation and communication. Our reference model is generated on the fly using quantization techniques and runs forward operations asynchronously on available CPUs to minimize the overhead. In addition, KGT caches the intermediate outputs of the frozen layers with prefetching to further skip the forward computation. Our implementation and testbed experiments with popular vision and language models show that KGT achieves 19%-43% training speedup w.r.t. the state-of-the-art without sacrificing accuracy.


The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning

arXiv.org Artificial Intelligence

The Internet of Things (IoT) is on the verge of a major paradigm shift. In the IoT system of the future, IoFT, the cloud will be substituted by the crowd where model training is brought to the edge, allowing IoT devices to collaboratively extract knowledge and build smart analytics/models while keeping their personal data stored locally. This paradigm shift was set into motion by the tremendous increase in computational power on IoT devices and the recent advances in decentralized and privacy-preserving model training, coined as federated learning (FL). This article provides a vision for IoFT and a systematic overview of current efforts towards realizing this vision. Specifically, we first introduce the defining characteristics of IoFT and discuss FL data-driven approaches, opportunities, and challenges that allow decentralized inference within three dimensions: (i) a global model that maximizes utility across all IoT devices, (ii) a personalized model that borrows strengths across all devices yet retains its own model, (iii) a meta-learning model that quickly adapts to new devices or learning tasks. We end by describing the vision and challenges of IoFT in reshaping different industries through the lens of domain experts. Those industries include manufacturing, transportation, energy, healthcare, quality & reliability, business, and computing.


Fed-ensemble: Improving Generalization through Model Ensembling in Federated Learning

arXiv.org Machine Learning

The rapid increase in computational power on edge devices has set forth federated learning (FL) as an elegant alternative to traditional cloud/data center based analytics. FL brings training to the edge, where devices collaboratively extract knowledge and learn complex models (most often deep learning models) with the orchestration of a central server while keeping their personal data stored locally. This paradigm shifts not only reduces privacy concerns but also sets forth many intrinsic advantages including cost efficiency, diversity, and reduced communication, amongst many others [39, 18]. The earliest and perhaps most popular FL algorithm is FederatedAveraging (fedavg) [28]. In fedavg, the central server broadcasts a global model (set of weights) to selected edge devices, these devices run updates based on their local data, and the server then takes a weighted average of the resulting local models to update the global model.


FedScale: Benchmarking Model and System Performance of Federated Learning

arXiv.org Artificial Intelligence

We present FedScale, a diverse set of challenging and realistic benchmark datasets to facilitate scalable, comprehensive, and reproducible federated learning (FL) research. FedScale datasets are large-scale, encompassing a diverse range of important FL tasks, such as image classification, object detection, language modeling, speech recognition, and reinforcement learning. For each dataset, we provide a unified evaluation protocol using realistic data splits and evaluation metrics. To meet the pressing need for reproducing realistic FL at scale, we have also built an efficient evaluation platform to simplify and standardize the process of FL experimental setup and model evaluation. Our evaluation platform provides flexible APIs to implement new FL algorithms and includes new execution backends with minimal developer efforts. Finally, we perform indepth benchmark experiments on these datasets. Our experiments suggest fruitful opportunities in heterogeneity-aware co-optimizations of the system and statistical efficiency under realistic FL characteristics. FedScale is open-source with permissive licenses and actively maintained,1 and we welcome feedback and contributions from the community.