Plotting

 Chowdhury, Md. Jalal Uddin


The Role, Trends, and Applications of Machine Learning in Undersea Communication: A Bangladesh Perspective

arXiv.org Artificial Intelligence

The rapid evolution of machine learning (ML) has brought about groundbreaking developments in numerous industries, not the least of which is in the area of undersea communication. This domain is critical for applications like ocean exploration, environmental monitoring, resource management, and national security. Bangladesh, a maritime nation with abundant resources in the Bay of Bengal, can harness the immense potential of ML to tackle the unprecedented challenges associated with underwater communication. Beyond that, environmental conditions are unique to the region: in addition to signal attenuation, multipath propagation, noise interference, and limited bandwidth. In this study, we address the necessity to bring ML into communication via undersea; it investigates the latest technologies under the domain of ML in that respect, such as deep learning and reinforcement learning, especially concentrating on Bangladesh scenarios in the sense of implementation. This paper offers a contextualized regional perspective by incorporating region-specific needs, case studies, and recent research to propose a roadmap for deploying ML-driven solutions to improve safety at sea, promote sustainable resource use, and enhance disaster response systems. This research ultimately highlights the promise of ML-powered solutions for transforming undersea communication, leading to more efficient and cost-effective technologies that subsequently contribute to both economic growth and environmental sustainability.


Plant Leaf Disease Detection and Classification Using Deep Learning: A Review and A Proposed System on Bangladesh's Perspective

arXiv.org Artificial Intelligence

A very crucial part of Bangladeshi people's employment, GDP contribution, and mainly livelihood is agriculture. It plays a vital role in decreasing poverty and ensuring food security. Plant diseases are a serious stumbling block in agricultural production in Bangladesh. At times, humans can't detect the disease from an infected leaf with the naked eye. Using inorganic chemicals or pesticides in plants when it's too late leads in vain most of the time, deposing all the previous labor. The deep-learning technique of leaf-based image classification, which has shown impressive results, can make the work of recognizing and classifying all diseases trouble-less and more precise. In this paper, we've mainly proposed a better model for the detection of leaf diseases. Our proposed paper includes the collection of data on three different kinds of crops: bell peppers, tomatoes, and potatoes. For training and testing the proposed CNN model, the plant leaf disease dataset collected from Kaggle is used, which has 17,430 images. The images are labeled with 14 separate classes of damage. The developed CNN model performs efficiently and could successfully detect and classify the tested diseases. The proposed CNN model may have great potency in crop disease management.


A Novel Ensemble-Based Deep Learning Model with Explainable AI for Accurate Kidney Disease Diagnosis

arXiv.org Artificial Intelligence

Chronic Kidney Disease (CKD) represents a significant global health challenge, characterized by the progressive decline in renal function, leading to the accumulation of waste products and disruptions in fluid balance within the body. Given its pervasive impact on public health, there is a pressing need for effective diagnostic tools to enable timely intervention. Our study delves into the application of cutting-edge transfer learning models for the early detection of CKD. Leveraging a comprehensive and publicly available dataset, we meticulously evaluate the performance of several state-of-the-art models, including EfficientNetV2, InceptionNetV2, MobileNetV2, and the Vision Transformer (ViT) technique. Remarkably, our analysis demonstrates superior accuracy rates, surpassing the 90% threshold with MobileNetV2 and achieving 91.5% accuracy with ViT. Moreover, to enhance predictive capabilities further, we integrate these individual methodologies through ensemble modeling, resulting in our ensemble model exhibiting a remarkable 96% accuracy in the early detection of CKD. This significant advancement holds immense promise for improving clinical outcomes and underscores the critical role of machine learning in addressing complex medical challenges.


A review-based study on different Text-to-Speech technologies

arXiv.org Artificial Intelligence

This research paper presents a comprehensive review-based study on various Text-to-Speech (TTS) technologies. TTS technology is an important aspect of human-computer interaction, enabling machines to convert written text into audible speech. The paper examines the different TTS technologies available, including concatenative TTS, formant synthesis TTS, and statistical parametric TTS. The study focuses on comparing the advantages and limitations of these technologies in terms of their naturalness of voice, the level of complexity of the system, and their suitability for different applications. In addition, the paper explores the latest advancements in TTS technology, including neural TTS and hybrid TTS. The findings of this research will provide valuable insights for researchers, developers, and users who want to understand the different TTS technologies and their suitability for specific applications.