Goto

Collaborating Authors

 Chow, Ka-Ho


Adaptive Deep Neural Network Inference Optimization with EENet

arXiv.org Artificial Intelligence

Well-trained deep neural networks (DNNs) treat all test samples equally during prediction. Adaptive DNN inference with early exiting leverages the observation that some test examples can be easier to predict than others. This paper presents EENet, a novel early-exiting scheduling framework for multi-exit DNN models. Instead of having every sample go through all DNN layers during prediction, EENet learns an early exit scheduler, which can intelligently terminate the inference earlier for certain predictions, which the model has high confidence of early exit. As opposed to previous early-exiting solutions with heuristics-based methods, our EENet framework optimizes an early-exiting policy to maximize model accuracy while satisfying the given per-sample average inference budget. Extensive experiments are conducted on four computer vision datasets (CIFAR-10, CIFAR-100, ImageNet, Cityscapes) and two NLP datasets (SST-2, AgNews). The results demonstrate that the adaptive inference by EENet can outperform the representative existing early exit techniques. We also perform a detailed visualization analysis of the comparison results to interpret the benefits of EENet.


Hierarchical Pruning of Deep Ensembles with Focal Diversity

arXiv.org Artificial Intelligence

Deep neural network ensembles combine the wisdom of multiple deep neural networks to improve the generalizability and robustness over individual networks. It has gained increasing popularity to study deep ensemble techniques in the deep learning community. Some mission-critical applications utilize a large number of deep neural networks to form deep ensembles to achieve desired accuracy and resilience, which introduces high time and space costs for ensemble execution. However, it still remains a critical challenge whether a small subset of the entire deep ensemble can achieve the same or better generalizability and how to effectively identify these small deep ensembles for improving the space and time efficiency of ensemble execution. This paper presents a novel deep ensemble pruning approach, which can efficiently identify smaller deep ensembles and provide higher ensemble accuracy than the entire deep ensemble of a large number of member networks. Our hierarchical ensemble pruning approach (HQ) leverages three novel ensemble pruning techniques. First, we show that the focal diversity metrics can accurately capture the complementary capacity of the member networks of an ensemble, which can guide ensemble pruning. Second, we design a focal diversity based hierarchical pruning approach, which will iteratively find high quality deep ensembles with low cost and high accuracy. Third, we develop a focal diversity consensus method to integrate multiple focal diversity metrics to refine ensemble pruning results, where smaller deep ensembles can be effectively identified to offer high accuracy, high robustness and high efficiency. Evaluated using popular benchmark datasets, we demonstrate that the proposed hierarchical ensemble pruning approach can effectively identify high quality deep ensembles with better generalizability while being more time and space efficient in ensemble decision making.


Exploring Model Learning Heterogeneity for Boosting Ensemble Robustness

arXiv.org Artificial Intelligence

Deep neural network ensembles hold the potential of improving generalization performance for complex learning tasks. This paper presents formal analysis and empirical evaluation to show that heterogeneous deep ensembles with high ensemble diversity can effectively leverage model learning heterogeneity to boost ensemble robustness. We first show that heterogeneous DNN models trained for solving the same learning problem, e.g., object detection, can significantly strengthen the mean average precision (mAP) through our weighted bounding box ensemble consensus method. Second, we further compose ensembles of heterogeneous models for solving different learning problems, e.g., object detection and semantic segmentation, by introducing the connected component labeling (CCL) based alignment. We show that this two-tier heterogeneity driven ensemble construction method can compose an ensemble team that promotes high ensemble diversity and low negative correlation among member models of the ensemble, strengthening ensemble robustness against both negative examples and adversarial attacks. Third, we provide a formal analysis of the ensemble robustness in terms of negative correlation. Extensive experiments validate the enhanced robustness of heterogeneous ensembles in both benign and adversarial settings. The source codes are available on GitHub at https://github.com/git-disl/HeteRobust.


STDLens: Model Hijacking-Resilient Federated Learning for Object Detection

arXiv.org Artificial Intelligence

Federated Learning (FL) has been gaining popularity as a collaborative learning framework to train deep learning-based object detection models over a distributed population of clients. Despite its advantages, FL is vulnerable to model hijacking. The attacker can control how the object detection system should misbehave by implanting Trojaned gradients using only a small number of compromised clients in the collaborative learning process. This paper introduces STDLens, a principled approach to safeguarding FL against such attacks. We first investigate existing mitigation mechanisms and analyze their failures caused by the inherent errors in spatial clustering analysis on gradients. Based on the insights, we introduce a three-tier forensic framework to identify and expel Trojaned gradients and reclaim the performance over the course of FL. We consider three types of adaptive attacks and demonstrate the robustness of STDLens against advanced adversaries. Extensive experiments show that STDLens can protect FL against different model hijacking attacks and outperform existing methods in identifying and removing Trojaned gradients with significantly higher precision and much lower false-positive rates.


Securing Distributed SGD against Gradient Leakage Threats

arXiv.org Artificial Intelligence

This paper presents a holistic approach to gradient leakage resilient distributed Stochastic Gradient Descent (SGD). First, we analyze two types of strategies for privacy-enhanced federated learning: (i) gradient pruning with random selection or low-rank filtering and (ii) gradient perturbation with additive random noise or differential privacy noise. We analyze the inherent limitations of these approaches and their underlying impact on privacy guarantee, model accuracy, and attack resilience. Next, we present a gradient leakage resilient approach to securing distributed SGD in federated learning, with differential privacy controlled noise as the tool. Unlike conventional methods with the per-client federated noise injection and fixed noise parameter strategy, our approach keeps track of the trend of per-example gradient updates. It makes adaptive noise injection closely aligned throughout the federated model training. Finally, we provide an empirical privacy analysis on the privacy guarantee, model utility, and attack resilience of the proposed approach. Extensive evaluation using five benchmark datasets demonstrates that our gradient leakage resilient approach can outperform the state-of-the-art methods with competitive accuracy performance, strong differential privacy guarantee, and high resilience against gradient leakage attacks. The code associated with this paper can be found: https://github.com/git-disl/Fed-alphaCDP.


LDP-Fed: Federated Learning with Local Differential Privacy

arXiv.org Machine Learning

This paper presents LDP-Fed, a novel federated learning system with a formal privacy guarantee using local differential privacy (LDP). Existing LDP protocols are developed primarily to ensure data privacy in the collection of single numerical or categorical values, such as click count in Web access logs. However, in federated learning model parameter updates are collected iteratively from each participant and consist of high dimensional, continuous values with high precision (10s of digits after the decimal point), making existing LDP protocols inapplicable. To address this challenge in LDP-Fed, we design and develop two novel approaches. First, LDP-Fed's LDP Module provides a formal differential privacy guarantee for the repeated collection of model training parameters in the federated training of large-scale neural networks over multiple individual participants' private datasets. Second, LDP-Fed implements a suite of selection and filtering techniques for perturbing and sharing select parameter updates with the parameter server. We validate our system deployed with a condensed LDP protocol in training deep neural networks on public data. We compare this version of LDP-Fed, coined CLDP-Fed, with other state-of-the-art approaches with respect to model accuracy, privacy preservation, and system capabilities.


Cross-Layer Strategic Ensemble Defense Against Adversarial Examples

arXiv.org Machine Learning

Deep neural network (DNN) has demonstrated its success in multiple domains. However, DNN models are inherently vulnerable to adversarial examples, which are generated by adding adversarial perturbations to benign inputs to fool the DNN model to misclassify. In this paper, we present a cross-layer strategic ensemble framework and a suite of robust defense algorithms, which are attack-independent, and capable of auto-repairing and auto-verifying the target model being attacked. Our strategic ensemble approach makes three original contributions. First, we employ input-transformation diversity to design the input-layer strategic transformation ensemble algorithms. Second, we utilize model-disagreement diversity to develop the output-layer strategic model ensemble algorithms. Finally, we create an input-output cross-layer strategic ensemble defense that strengthens the defensibility by combining diverse input transformation based model ensembles with diverse output verification model ensembles. Evaluated over 10 attacks on ImageNet dataset, we show that our strategic ensemble defense algorithms can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false negative rates, compared to existing representative defense methods.


Deep Neural Network Ensembles against Deception: Ensemble Diversity, Accuracy and Robustness

arXiv.org Machine Learning

Ensemble learning is a methodology that integrates multiple DNN learners for improving prediction performance of individual learners. Diversity is greater when the errors of the ensemble prediction is more uniformly distributed. Greater diversity is highly correlated with the increase in ensemble accuracy. Another attractive property of diversity optimized ensemble learning is its robustness against deception: an adversarial perturbation attack can mislead one DNN model to misclassify but may not fool other ensemble DNN members consistently. In this paper we first give an overview of the concept of ensemble diversity and examine the three types of ensemble diversity in the context of DNN classifiers. We then describe a set of ensemble diversity measures, a suite of algorithms for creating diversity ensembles and for performing ensemble consensus (voted or learned) for generating high accuracy ensemble output by strategically combining outputs of individual members. This paper concludes with a discussion on a set of open issues in quantifying ensemble diversity for robust deep learning.


Denoising and Verification Cross-Layer Ensemble Against Black-box Adversarial Attacks

arXiv.org Machine Learning

--Deep neural networks (DNNs) have demonstrated impressive performance on many challenging machine learning tasks. However, DNNs are vulnerable to adversarial inputs generated by adding maliciously crafted perturbations to the benign inputs. As a growing number of attacks have been reported to generate adversarial inputs of varying sophistication, the defense-attack arms race has been accelerated. MODEF intelligently combines unsupervised model denoising ensemble with supervised model verification ensemble by quantifying model diversity, aiming to boost the robustness of the target model against adversarial examples. Evaluated using eleven representative attacks on popular benchmark datasets, we show that MODEF achieves remarkable defense success rates, compared with existing defense methods, and provides a superior capability of repairing adversarial inputs and making correct predictions with high accuracy in the presence of black-box attacks. The recent advances in deep neural networks (DNNs) have powered numerous applications in different domains due to their outstanding performance compared to traditional machine learning techniques. However, it has been shown that DNNs can be easily fooled by adversarial inputs [1], making them become a double-edged sword as the vulnerability of DNNs to adversarial attacks has posed serious threats to many security-critical applications, such as biometric authentication and autonomous driving. As a number of defenses are being proposed, more attacks of varying sophistication have been put forward, accelerating the defense-attack arms race. Some even argue that designing new attacks requires much less efforts than developing effective defenses. Thus, improving the robustness and defensibility against adversarial attacks is crucial. Adversarial examples are generated by maliciously perturbing benign examples sent to the target DNN model through querying its prediction API, aiming to fool and mislead the target model to misclassify by producing incorrect predictions randomly (untargeted attack) or purposefully (targeted attack).


Demystifying Learning Rate Polices for High Accuracy Training of Deep Neural Networks

arXiv.org Machine Learning

Learning Rate (LR) is an important hyper-parameter to tune for effective training of deep neural networks (DNNs). Even for the baseline of a constant learning rate, it is non-trivial to choose a good constant value for training a DNN. Dynamic learning rates involve multi-step tuning of LR values at various stages of the training process and offer high accuracy and fast convergence. However, they are much harder to tune. In this paper, we present a comprehensive study of 13 learning rate functions and their associated LR policies by examining their range parameters, step parameters, and value update parameters. We propose a set of metrics for evaluating and selecting LR policies, including the classification confidence, variance, cost, and robustness, and implement them in LRBench, an LR benchmarking system. LRBench can assist end-users and DNN developers to select good LR policies and avoid bad LR policies for training their DNNs. We tested LRBench on Caffe, an open source deep learning framework, to showcase the tuning optimization of LR policies. Evaluated through extensive experiments, we attempt to demystify the tuning of LR policies by identifying good LR policies with effective LR value ranges and step sizes for LR update schedules.