Chorowski, Jan
Towards better decoding and language model integration in sequence to sequence models
Chorowski, Jan, Jaitly, Navdeep
The recently proposed Sequence-to-Sequence (seq2seq) framework advocates replacing complex data processing pipelines, such as an entire automatic speech recognition system, with a single neural network trained in an end-to-end fashion. In this contribution, we analyse an attention-based seq2seq speech recognition system that directly transcribes recordings into characters. We observe two shortcomings: overconfidence in its predictions and a tendency to produce incomplete transcriptions when language models are used. We propose practical solutions to both problems achieving competitive speaker independent word error rates on the Wall Street Journal dataset: without separate language models we reach 10.6% WER, while together with a trigram language model, we reach 6.7% WER.
End-to-End Attention-based Large Vocabulary Speech Recognition
Bahdanau, Dzmitry, Chorowski, Jan, Serdyuk, Dmitriy, Brakel, Philemon, Bengio, Yoshua
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modelling, language modelling and sequence decoding. We investigate a more direct approach in which the HMM is replaced with a Recurrent Neural Network (RNN) that performs sequence prediction directly at the character level. Alignment between the input features and the desired character sequence is learned automatically by an attention mechanism built into the RNN. For each predicted character, the attention mechanism scans the input sequence and chooses relevant frames. We propose two methods to speed up this operation: limiting the scan to a subset of most promising frames and pooling over time the information contained in neighboring frames, thereby reducing source sequence length. Integrating an n-gram language model into the decoding process yields recognition accuracies similar to other HMM-free RNN-based approaches.
Attention-Based Models for Speech Recognition
Chorowski, Jan, Bahdanau, Dzmitry, Serdyuk, Dmitriy, Cho, Kyunghyun, Bengio, Yoshua
Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in- cluding machine translation, handwriting synthesis and image caption gen- eration. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in reaches a competitive 18.7% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18% PER in single utterances and 20% in 10-times longer (repeated) utterances. Finally, we propose a change to the at- tention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6% level.
Blocks and Fuel: Frameworks for deep learning
van Merriënboer, Bart, Bahdanau, Dzmitry, Dumoulin, Vincent, Serdyuk, Dmitriy, Warde-Farley, David, Chorowski, Jan, Bengio, Yoshua
We introduce two Python frameworks to train neural networks on large datasets: Blocks and Fuel. Blocks is based on Theano, a linear algebra compiler with CUDA-support. It facilitates the training of complex neural network models by providing parametrized Theano operations, attaching metadata to Theano's symbolic computational graph, and providing an extensive set of utilities to assist training the networks, e.g. training algorithms, logging, monitoring, visualization, and serialization. Fuel provides a standard format for machine learning datasets. It allows the user to easily iterate over large datasets, performing many types of pre-processing on the fly.
End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results
Chorowski, Jan, Bahdanau, Dzmitry, Cho, Kyunghyun, Bengio, Yoshua
We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder that directly emits a stream of phonemes. The alignment between the input and output sequences is established using an attention mechanism: the decoder emits each symbol based on a context created with a subset of input symbols elected by the attention mechanism. We report initial results demonstrating that this new approach achieves phoneme error rates that are comparable to the state-of-the-art HMM-based decoders, on the TIMIT dataset.