Well File:

 Chongxuan LI


Triple Generative Adversarial Nets

Neural Information Processing Systems

Generative Adversarial Nets (GANs) have shown promise in image generation and semi-supervised learning (SSL). However, existing GANs in SSL have two problems: (1) the generator and the discriminator (i.e. the classifier) may not be optimal at the same time; and (2) the generator cannot control the semantics of the generated samples. The problems essentially arise from the two-player formulation, where a single discriminator shares incompatible roles of identifying fake samples and predicting labels and it only estimates the data without considering the labels. To address the problems, we present triple generative adversarial net (Triple-GAN), which consists of three players--a generator, a discriminator and a classifier. The generator and the classifier characterize the conditional distributions between images and labels, and the discriminator solely focuses on identifying fake image-label pairs. We design compatible utilities to ensure that the distributions characterized by the classifier and the generator both converge to the data distribution. Our results on various datasets demonstrate that Triple-GAN as a unified model can simultaneously (1) achieve the state-of-the-art classification results among deep generative models, and (2) disentangle the classes and styles of the input and transfer smoothly in the data space via interpolation in the latent space class-conditionally.





Multi-objects Generation with Amortized Structural Regularization

Neural Information Processing Systems

Deep generative models (DGMs) have shown promise in image generation. However, most of the existing methods learn a model by simply optimizing a divergence between the marginal distributions of the model and the data, and often fail to capture rich structures, such as attributes of objects and their relationships, in an image. Human knowledge is a crucial element to the success of DGMs to infer these structures, especially in unsupervised learning. In this paper, we propose amortized structural regularization (ASR), which adopts posterior regularization (PR) to embed human knowledge into DGMs via a set of structural constraints. We derive a lower bound of the regularized log-likelihood in PR and adopt the amortized inference technique to jointly optimize the generative model and an auxiliary recognition model for inference efficiently. Empirical results show that ASR outperforms the DGM baselines in terms of inference performance and sample quality.