Not enough data to create a plot.
Try a different view from the menu above.
Cholakkal, Hisham
Open3DTrack: Towards Open-Vocabulary 3D Multi-Object Tracking
Ishaq, Ayesha, Boudjoghra, Mohamed El Amine, Lahoud, Jean, Khan, Fahad Shahbaz, Khan, Salman, Cholakkal, Hisham, Anwer, Rao Muhammad
3D multi-object tracking plays a critical role in autonomous driving by enabling the real-time monitoring and prediction of multiple objects' movements. Traditional 3D tracking systems are typically constrained by predefined object categories, limiting their adaptability to novel, unseen objects in dynamic environments. To address this limitation, we introduce open-vocabulary 3D tracking, which extends the scope of 3D tracking to include objects beyond predefined categories. We formulate the problem of open-vocabulary 3D tracking and introduce dataset splits designed to represent various open-vocabulary scenarios. We propose a novel approach that integrates open-vocabulary capabilities into a 3D tracking framework, allowing for generalization to unseen object classes. Our method effectively reduces the performance gap between tracking known and novel objects through strategic adaptation. Experimental results demonstrate the robustness and adaptability of our method in diverse outdoor driving scenarios. To the best of our knowledge, this work is the first to address open-vocabulary 3D tracking, presenting a significant advancement for autonomous systems in real-world settings. Code, trained models, and dataset splits are available publicly.
Efficient 3D-Aware Facial Image Editing via Attribute-Specific Prompt Learning
Kumar, Amandeep, Awais, Muhammad, Narayan, Sanath, Cholakkal, Hisham, Khan, Salman, Anwer, Rao Muhammad
Drawing upon StyleGAN's expressivity and disentangled latent space, existing 2D approaches employ textual prompting to edit facial images with different attributes. In contrast, 3D-aware approaches that generate faces at different target poses require attribute-specific classifiers, learning separate model weights for each attribute, and are not scalable for novel attributes. In this work, we propose an efficient, plug-and-play, 3D-aware face editing framework based on attribute-specific prompt learning, enabling the generation of facial images with controllable attributes across various target poses. To this end, we introduce a text-driven learnable style token-based latent attribute editor (LAE). The LAE harnesses a pre-trained vision-language model to find text-guided attribute-specific editing direction in the latent space of any pre-trained 3D-aware GAN. It utilizes learnable style tokens and style mappers to learn and transform this editing direction to 3D latent space. To train LAE with multiple attributes, we use directional contrastive loss and style token loss. Furthermore, to ensure view consistency and identity preservation across different poses and attributes, we employ several 3D-aware identity and pose preservation losses. Our experiments show that our proposed framework generates high-quality images with 3D awareness and view consistency while maintaining attribute-specific features. We demonstrate the effectiveness of our method on different facial attributes, including hair color and style, expression, and others. Code: https://github.com/VIROBO-15/Efficient-3D-Aware-Facial-Image-Editing.
PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model
Kareem, Amrin, Lahoud, Jean, Cholakkal, Hisham
Recent advancements in 3D perception systems have significantly improved their ability to perform visual recognition tasks such as segmentation. However, these systems still heavily rely on explicit human instruction to identify target objects or categories, lacking the capability to actively reason and comprehend implicit user intentions. We introduce a novel segmentation task known as reasoning part segmentation for 3D objects, aiming to output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object. To facilitate evaluation and benchmarking, we present a large 3D dataset comprising over 60k instructions paired with corresponding ground-truth part segmentation annotations specifically curated for reasoning-based 3D part segmentation. We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations corresponding to 3D object segmentation requests. Experiments show that our method achieves competitive performance to models that use explicit queries, with the additional abilities to identify part concepts, reason about them, and complement them with world knowledge. Our source code, dataset, and trained models are available here.
BiMediX: Bilingual Medical Mixture of Experts LLM
Pieri, Sara, Mullappilly, Sahal Shaji, Khan, Fahad Shahbaz, Anwer, Rao Muhammad, Khan, Salman, Baldwin, Timothy, Cholakkal, Hisham
In this paper, we introduce BiMediX, the first bilingual medical mixture of experts LLM designed for seamless interaction in both English and Arabic. Our model facilitates a wide range of medical interactions in English and Arabic, including multi-turn chats to inquire about additional details such as patient symptoms and medical history, multiple-choice question answering, and open-ended question answering. We propose a semi-automated English-to-Arabic translation pipeline with human refinement to ensure high-quality translations. We also introduce a comprehensive evaluation benchmark for Arabic medical LLMs. Furthermore, we introduce BiMed1.3M, an extensive Arabic-English bilingual instruction set covering 1.3 Million diverse medical interactions, resulting in over 632 million healthcare specialized tokens for instruction tuning. Our BiMed1.3M dataset includes 250k synthesized multi-turn doctor-patient chats and maintains a 1:2 Arabic-to-English ratio. Our model outperforms state-of-the-art Med42 and Meditron by average absolute gains of 2.5% and 4.1%, respectively, computed across multiple medical evaluation benchmarks in English, while operating at 8-times faster inference. Moreover, our BiMediX outperforms the generic Arabic-English bilingual LLM, Jais-30B, by average absolute gains of 10% on our Arabic medical benchmark and 15% on bilingual evaluations across multiple datasets. Our project page with source code and trained model is available at https://github.com/mbzuai-oryx/BiMediX .
GLaMM: Pixel Grounding Large Multimodal Model
Rasheed, Hanoona, Maaz, Muhammad, Mullappilly, Sahal Shaji, Shaker, Abdelrahman, Khan, Salman, Cholakkal, Hisham, Anwer, Rao M., Xing, Erix, Yang, Ming-Hsuan, Khan, Fahad S.
Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial LMMs used holistic images and text prompts to generate ungrounded textual responses. Recently, region-level LMMs have been used to generate visually grounded responses. However, they are limited to only referring to a single object category at a time, require users to specify the regions, or cannot offer dense pixel-wise object grounding. In this work, we present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the conversations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity, both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of visually Grounded Conversation Generation (GCG), we introduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed GCG task requires densely grounded concepts in natural scenes at a large-scale. To this end, we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG, GLaMM also performs effectively on several downstream tasks, e.g., referring expression segmentation, image and region-level captioning and vision-language conversations.
Arabic Mini-ClimateGPT : A Climate Change and Sustainability Tailored Arabic LLM
Mullappilly, Sahal Shaji, Shaker, Abdelrahman, Thawakar, Omkar, Cholakkal, Hisham, Anwer, Rao Muhammad, Khan, Salman, Khan, Fahad Shahbaz
Climate change is one of the most significant challenges we face together as a society. Creating awareness and educating policy makers the wide-ranging impact of climate change is an essential step towards a sustainable future. Recently, Large Language Models (LLMs) like ChatGPT and Bard have shown impressive conversational abilities and excel in a wide variety of NLP tasks. While these models are close-source, recently alternative open-source LLMs such as Stanford Alpaca and Vicuna have shown promising results. However, these open-source models are not specifically tailored for climate related domain specific information and also struggle to generate meaningful responses in other languages such as, Arabic. To this end, we propose a light-weight Arabic Mini-ClimateGPT that is built on an open-source LLM and is specifically fine-tuned on a conversational-style instruction tuning curated Arabic dataset Clima500-Instruct with over 500k instructions about climate change and sustainability. Further, our model also utilizes a vector embedding based retrieval mechanism during inference. We validate our proposed model through quantitative and qualitative evaluations on climate-related queries. Our model surpasses the baseline LLM in 88.3% of cases during ChatGPT-based evaluation. Furthermore, our human expert evaluation reveals an 81.6% preference for our model's responses over multiple popular open-source models. Our open-source demos, code-base and models are available here https://github.com/mbzuai-oryx/ClimateGPT.
SA2-Net: Scale-aware Attention Network for Microscopic Image Segmentation
Fiaz, Mustansar, Heidari, Moein, Anwer, Rao Muhammad, Cholakkal, Hisham
Microscopic image segmentation is a challenging task, wherein the objective is to assign semantic labels to each pixel in a given microscopic image. While convolutional neural networks (CNNs) form the foundation of many existing frameworks, they often struggle to explicitly capture long-range dependencies. Although transformers were initially devised to address this issue using self-attention, it has been proven that both local and global features are crucial for addressing diverse challenges in microscopic images, including variations in shape, size, appearance, and target region density. In this paper, we introduce SA2-Net, an attention-guided method that leverages multi-scale feature learning to effectively handle diverse structures within microscopic images. Specifically, we propose scale-aware attention (SA2) module designed to capture inherent variations in scales and shapes of microscopic regions, such as cells, for accurate segmentation. This module incorporates local attention at each level of multi-stage features, as well as global attention across multiple resolutions. Furthermore, we address the issue of blurred region boundaries (e.g., cell boundaries) by introducing a novel upsampling strategy called the Adaptive Up-Attention (AuA) module. This module enhances the discriminative ability for improved localization of microscopic regions using an explicit attention mechanism. Extensive experiments on five challenging datasets demonstrate the benefits of our SA2-Net model. Our source code is publicly available at \url{https://github.com/mustansarfiaz/SA2-Net}.
Handling Data Heterogeneity via Architectural Design for Federated Visual Recognition
Pieri, Sara, Restom, Jose Renato, Horvath, Samuel, Cholakkal, Hisham
Federated Learning (FL) is a promising research paradigm that enables the collaborative training of machine learning models among various parties without the need for sensitive information exchange. Nonetheless, retaining data in individual clients introduces fundamental challenges to achieving performance on par with centrally trained models. Our study provides an extensive review of federated learning applied to visual recognition. It underscores the critical role of thoughtful architectural design choices in achieving optimal performance, a factor often neglected in the FL literature. Many existing FL solutions are tested on shallow or simple networks, which may not accurately reflect real-world applications. This practice restricts the transferability of research findings to large-scale visual recognition models. Through an in-depth analysis of diverse cutting-edge architectures such as convolutional neural networks, transformers, and MLP-mixers, we experimentally demonstrate that architectural choices can substantially enhance FL systems' performance, particularly when handling heterogeneous data. We study 19 visual recognition models from five different architectural families on four challenging FL datasets. We also re-investigate the inferior performance of convolution-based architectures in the FL setting and analyze the influence of normalization layers on the FL performance. Our findings emphasize the importance of architectural design for computer vision tasks in practical scenarios, effectively narrowing the performance gap between federated and centralized learning. Our source code is available at https://github.com/sarapieri/fed_het.git.
TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View Radar Semantic Segmentation
Dalbah, Yahia, Lahoud, Jean, Cholakkal, Hisham
Scene understanding plays an essential role in enabling autonomous driving and maintaining high standards of performance and safety. To address this task, cameras and laser scanners (LiDARs) have been the most commonly used sensors, with radars being less popular. Despite that, radars remain low-cost, information-dense, and fast-sensing techniques that are resistant to adverse weather conditions. While multiple works have been previously presented for radar-based scene semantic segmentation, the nature of the radar data still poses a challenge due to the inherent noise and sparsity, as well as the disproportionate foreground and background. In this work, we propose a novel approach to the semantic segmentation of radar scenes using a multi-input fusion of radar data through a novel architecture and loss functions that are tailored to tackle the drawbacks of radar perception. Our novel architecture includes an efficient attention block that adaptively captures important feature information. Our method, TransRadar, outperforms state-of-the-art methods on the CARRADA and RADIal datasets while having smaller model sizes. https://github.com/YahiDar/TransRadar
Foundational Models Defining a New Era in Vision: A Survey and Outlook
Awais, Muhammad, Naseer, Muzammal, Khan, Salman, Anwer, Rao Muhammad, Cholakkal, Hisham, Shah, Mubarak, Yang, Ming-Hsuan, Khan, Fahad Shahbaz
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world. The complex relations between objects and their locations, ambiguities, and variations in the real-world environment can be better described in human language, naturally governed by grammatical rules and other modalities such as audio and depth. The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time. These models are referred to as foundational models. The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions. In this survey, we provide a comprehensive review of such emerging foundational models, including typical architecture designs to combine different modalities (vision, text, audio, etc), training objectives (contrastive, generative), pre-training datasets, fine-tuning mechanisms, and the common prompting patterns; textual, visual, and heterogeneous. We discuss the open challenges and research directions for foundational models in computer vision, including difficulties in their evaluations and benchmarking, gaps in their real-world understanding, limitations of their contextual understanding, biases, vulnerability to adversarial attacks, and interpretability issues. We review recent developments in this field, covering a wide range of applications of foundation models systematically and comprehensively. A comprehensive list of foundational models studied in this work is available at \url{https://github.com/awaisrauf/Awesome-CV-Foundational-Models}.