Goto

Collaborating Authors

 Chiappa, Silvia


Degenerate Feedback Loops in Recommender Systems

arXiv.org Machine Learning

Machine learning is used extensively in recommender systems deployed in products. The decisions made by these systems can influence user beliefs and preferences which in turn affect the feedback the learning system receives - thus creating a feedback loop. This phenomenon can give rise to the so-called "echo chambers" or "filter bubbles" that have user and societal implications. In this paper, we provide a novel theoretical analysis that examines both the role of user dynamics and the behavior of recommender systems, disentangling the echo chamber from the filter bubble effect. In addition, we offer practical solutions to slow down system degeneracy. Our study contributes toward understanding and developing solutions to commonly cited issues in the complex temporal scenario, an area that is still largely unexplored.


Causal Reasoning from Meta-reinforcement Learning

arXiv.org Machine Learning

Discovering and exploiting the causal structure in the environment is a crucial challenge for intelligent agents. Here we explore whether causal reasoning can emerge via meta-reinforcement learning. We train a recurrent network with model-free reinforcement learning to solve a range of problems that each contain causal structure. We find that the trained agent can perform causal reasoning in novel situations in order to obtain rewards. The agent can select informative interventions, draw causal inferences from observational data, and make counterfactual predictions. Although established formal causal reasoning algorithms also exist, in this paper we show that such reasoning can arise from model-free reinforcement learning, and suggest that causal reasoning in complex settings may benefit from the more end-to-end learning-based approaches presented here. This work also offers new strategies for structured exploration in reinforcement learning, by providing agents with the ability to perform -- and interpret -- experiments.


Path-Specific Counterfactual Fairness

arXiv.org Machine Learning

We consider the problem of learning fair decision systems in complex scenarios in which a sensitive attribute might affect the decision along both fair and unfair pathways. We introduce a causal approach to disregard effects along unfair pathways that simplifies and generalizes previous literature. Our method corrects observations adversely affected by the sensitive attribute, and uses these to form a decision. This avoids disregarding fair information, and does not require an often intractable computation of the path-specific effect. We leverage recent developments in deep learning and approximate inference to achieve a solution that is widely applicable to complex, non-linear scenarios.


Recurrent Environment Simulators

arXiv.org Machine Learning

Models that can simulate how environments change in response to actions can be used by agents to plan and act efficiently. We improve on previous environment simulators from high-dimensional pixel observations by introducing recurrent neural networks that are able to make temporally and spatially coherent predictions for hundreds of time-steps into the future. We present an in-depth analysis of the factors affecting performance, providing the most extensive attempt to advance the understanding of the properties of these models. We address the issue of computationally inefficiency with a model that does not need to generate a high-dimensional image at each time-step. We show that our approach can be used to improve exploration and is adaptable to many diverse environments, namely 10 Atari games, a 3D car racing environment, and complex 3D mazes.


Unified Treatment of Hidden Markov Switching Models

arXiv.org Machine Learning

Many real-world problems encountered in several disciplines deal with the modeling of time-series containing different underlying dynamical regimes, for which probabilistic approaches are very often employed. In this paper we describe several such approaches in the common framework of graphical models. We give a unified overview of models previously introduced in the literature, which is simpler and more comprehensive than previous descriptions and enables us to highlight commonalities and differences among models that were not observed in the past. In addition, we present several new models and inference routines, which are naturally derived within this unified viewpoint.


Movement extraction by detecting dynamics switches and repetitions

Neural Information Processing Systems

Many time-series such as human movement data consist of a sequence of basic actions, e.g., forehands and backhands in tennis. Automatically extracting and characterizing such actions is an important problem for a variety of different applications. In this paper, we present a probabilistic segmentation approach in which an observed time-series is modeled as a concatenation of segments corresponding to different basic actions. Each segment is generated through a noisy transformation of one of a few hidden trajectories representing different types of movement, with possible time re-scaling. We analyze three different approximation methods for dealing with model intractability, and demonstrate how the proposed approach can successfully segment table tennis movements recorded using a robot arm as haptic input device.


Using Bayesian Dynamical Systems for Motion Template Libraries

Neural Information Processing Systems

Motor primitives or motion templates have become an important concept for both modeling human motor control as well as generating robot behaviors using imitation learning. Recent impressive results range from humanoid robot movement generation to timing models of human motions. The automatic generation of skill libraries containing multiple motion templates is an important step in robot learning. Such a skill learning system needs to cluster similar movements together and represent each resulting motion template as a generative model which is subsequently used for the execution of the behavior by a robot system. In this paper, we show how human trajectories captured as multidimensional time-series can be clustered using Bayesian mixtures of linear Gaussian state-space models based on the similarity of their dynamics. The appropriate number of templates is automatically determined by enforcing a parsimonious parametrization. As the resulting model is intractable, we introduce a novel approximation method based on variational Bayes, which is especially designed to enable the use of efficient inference algorithms. On recorded human Balero movements, this method is not only capable of finding reasonable motion templates but also yields a generative model which works well in the execution of this complex task on a simulated anthropomorphic SARCOS arm.


Unified Inference for Variational Bayesian Linear Gaussian State-Space Models

Neural Information Processing Systems

Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in applications ranging from acoustics to bioinformatics. The most challenging aspect of implementing the method is in performing inference on the hidden state sequence of the model. We show how to convert the inference problem so that standard Kalman Filtering/Smoothing recursions from the literature may be applied. This is in contrast to previously published approaches based on Belief Propagation. Our framework both simplifies and unifies the inference problem, so that future applications may be more easily developed. We demonstrate the elegance of the approach on Bayesian temporal ICA, with an application to finding independent dynamical processes underlying noisy EEG signals.


Unified Inference for Variational Bayesian Linear Gaussian State-Space Models

Neural Information Processing Systems

Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in applications ranging from acoustics to bioinformatics. The most challenging aspect of implementing the method is in performing inference on the hidden state sequence of the model. We show how to convert the inference problem so that standard Kalman Filtering/Smoothing recursions from the literature may be applied. This is in contrast to previously published approaches based on Belief Propagation. Our framework both simplifies and unifies the inference problem, so that future applications may be more easily developed. We demonstrate the elegance of the approach on Bayesian temporal ICA, with an application to finding independent dynamical processes underlying noisy EEG signals.