Plotting

 Chia, Yew Ken


PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference

arXiv.org Artificial Intelligence

As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall $1\%$ to $5\%$ performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.


The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles

arXiv.org Artificial Intelligence

In our evaluation, we assess the performance of GPT-[n] and o-[n] models on abstract multimodal puzzles from PuzzleVQA, which primarily test abstract reasoning. Additionally, we evaluate the models on AlgoPuzzleVQA, which require an algorithmic approach rather than brute-force solving. To ensure a comprehensive evaluation, we present the puzzles in both multiple-choice and openended question answering formats. Our findings indicate that despite their sophisticated capabilities in standard benchmarks, current models still struggle with seemingly simple multimodal puzzles (Figure 3). Contrary to previous benchmarks such as ARC-AGI, we observe a less dramatic reasoning curve without extreme jumps in performance. This limitation highlights the substantial gap between current artificial intelligence and human-like reasoning abilities. As the models continue to rapidly advance and scale as in Figure 1, this benchmark will serve as a critical indicator of progress toward more robust and generalized artificial intelligence. Overall, here are the key findings of our study: TL;DR 1. Performance steadily improves from GPT-4-Turbo to GPT-4o to o1. While the jump from GPT-4-Turbo to GPT-4o is moderate, the transition from GPT-4o to o1 marks a significant advancement but it comes at a cost of 750x more inference cost.


M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework

arXiv.org Artificial Intelligence

The ability to understand and answer questions over documents can be useful in many business and practical applications. However, documents often contain lengthy and diverse multimodal contents such as texts, figures, and tables, which are very time-consuming for humans to read thoroughly. Hence, there is an urgent need to develop effective and automated methods to aid humans in this task. In this work, we introduce M-LongDoc, a benchmark of 851 samples, and an automated framework to evaluate the performance of large multimodal models. We further propose a retrieval-aware tuning approach for efficient and effective multimodal document reading. Compared to existing works, our benchmark consists of more recent and lengthy documents with hundreds of pages, while also requiring open-ended solutions and not just extractive answers. To our knowledge, our training framework is the first to directly address the retrieval setting for multimodal long documents. To enable tuning open-source models, we construct a training corpus in a fully automatic manner for the question-answering task over such documents. Experiments show that our tuning approach achieves a relative improvement of 4.6% for the correctness of model responses, compared to the baseline open-source models. Our data, code, and models are available at https://multimodal-documents.github.io.


Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths

arXiv.org Artificial Intelligence

Advanced models such as OpenAI o1 exhibit impressive problem-solving capabilities through step-by-step reasoning. However, they may still falter on more complex problems, making errors that disrupt their reasoning paths. We attribute this to the expansive solution space, where each step has the risk of diverging into mistakes. To enhance language model reasoning, we introduce a specialized training framework called Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths. Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance. Reasoning Paths Optimization does not rely on large-scale human-annotated rationales or outputs from closed-source models, making it scalable and data-efficient. We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions. The experiments demonstrate that our framework significantly enhances the reasoning performance of large language models, with up to 3.1% and 4.3% improvement on GSM8K and MMLU (STEM) respectively. Our data and code can be found at https://reasoning-paths.github.io.


Can-Do! A Dataset and Neuro-Symbolic Grounded Framework for Embodied Planning with Large Multimodal Models

arXiv.org Artificial Intelligence

Large multimodal models have demonstrated impressive problem-solving abilities in vision and language tasks, and have the potential to encode extensive world knowledge. However, it remains an open challenge for these models to perceive, reason, plan, and act in realistic environments. In this work, we introduce Can-Do, a benchmark dataset designed to evaluate embodied planning abilities through more diverse and complex scenarios than previous datasets. Our dataset includes 400 multimodal samples, each consisting of natural language user instructions, visual images depicting the environment, state changes, and corresponding action plans. The data encompasses diverse aspects of commonsense knowledge, physical understanding, and safety awareness. Our fine-grained analysis reveals that state-of-the-art models, including GPT-4V, face bottlenecks in visual perception, comprehension, and reasoning abilities. To address these challenges, we propose NeuroGround, a neurosymbolic framework that first grounds the plan generation in the perceived environment states and then leverages symbolic planning engines to augment the model-generated plans. Experimental results demonstrate the effectiveness of our framework compared to strong baselines. Our code and dataset are available at https://embodied-planning.github.io.


Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions

arXiv.org Artificial Intelligence

As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.


Chain-of-Knowledge: Grounding Large Language Models via Dynamic Knowledge Adapting over Heterogeneous Sources

arXiv.org Artificial Intelligence

It results in more factual rationales and reduced hallucination in generation. Specifically, CoK consists of three stages: reasoning preparation, dynamic knowledge adapting, and answer consolidation. Given a knowledge-intensive question, CoK first prepares several preliminary rationales and answers while identifying the relevant knowledge domains. If there is no majority consensus among the answers from samples, CoK corrects the rationales step by step by adapting knowledge from the identified domains. These corrected rationales can plausibly serve as a better foundation for the final answer consolidation. Unlike prior studies that primarily use unstructured data, CoK also leverages structured knowledge sources such as Wikidata and tables that provide more reliable factual information. To access both unstructured and structured knowledge sources in the dynamic knowledge adapting stage, we propose an adaptive query generator that allows the generation of queries for various types of query languages, including SPARQL, SQL, and natural sentences. Moreover, to minimize error propagation between rationales, CoK corrects the rationales progressively using preceding corrected rationales to generate and correct subsequent rationales. Extensive experiments show that CoK consistently improves the performance of LLMs on knowledge-intensive tasks across different domains. In recent years, large language models (LLMs) such as ChatGPT (OpenAI, 2023) have demonstrated impressive language generation capabilities (Cheng et al., 2023; Ding et al., 2023). However, one major challenge of LLMs lies in hallucination, which is their tendency to confidently generate plausible but factually incorrect texts (Ji et al., 2023). As shown in Figure 1, given a question, "What year was the Argentine actor who directed El Tio Disparate born?" which requires factual knowledge to answer, the most advanced LLMs often provide an incorrect answer. While LLMs have the remarkable capability to recall information from their training data, effectively updating or controlling the factual knowledge within these models remains challenging (Luo et al., 2023). A promising direction to address hallucination in generation is to augment the LLMs with external knowledge (Mialon et al., 2023). These methods involve incorporating LLMs with a retrieval system, which seeks to utilize external factual knowledge to guide the generation process. Instead of relying solely on the internal training knowledge of LLMs, these methods can fetch relevant infor-Equal contribution. Xingxuan Li, Yew Ken Chia, and Bosheng Ding are under the Joint Ph.D. Program between Alibaba and their corresponding universities. We will make our code and data publicly available.


Contrastive Chain-of-Thought Prompting

arXiv.org Artificial Intelligence

Despite the success of chain of thought in enhancing language model reasoning, the underlying process remains less well understood. Although logically sound reasoning appears inherently crucial for chain of thought, prior studies surprisingly reveal minimal impact when using invalid demonstrations instead. Furthermore, the conventional chain of thought does not inform language models on what mistakes to avoid, which potentially leads to more errors. Hence, inspired by how humans can learn from both positive and negative examples, we propose contrastive chain of thought to enhance language model reasoning. Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations, to guide the model to reason step-by-step while reducing reasoning mistakes. To improve generalization, we introduce an automatic method to construct contrastive demonstrations. Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.


M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models

arXiv.org Artificial Intelligence

Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at \url{https://github.com/DAMO-NLP-SG/M3Exam}.


Flacuna: Unleashing the Problem Solving Power of Vicuna using FLAN Fine-Tuning

arXiv.org Artificial Intelligence

Recently, the release of INSTRUCTEVAL has provided valuable insights into the performance of large language models (LLMs) that utilize encoder-decoder or decoder-only architecture. Interestingly, despite being introduced four years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general problem-solving skills. This performance discrepancy can be attributed to three key factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset. In this technical report, our main focus is on investigating the impact of the third factor by leveraging VICUNA, a large language model based on LLAMA, which has undergone fine-tuning on ChatGPT conversations. To achieve this objective, we fine-tuned VICUNA using a customized instruction dataset collection called FLANMINI. This collection includes a subset of the large-scale instruction dataset known as FLAN, as well as various code-related datasets and conversational datasets derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that demand problem-solving skills. Our experimental findings strongly indicate that the enhanced problem-solving abilities of our model, FLACUNA, are obtained through fine-tuning VICUNA on the FLAN dataset, leading to significant improvements across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly available at https://huggingface.co/declare-lab/flacuna-13b-v1.0.