Cheung, Brian
Superposition of many models into one
Cheung, Brian, Terekhov, Alex, Chen, Yubei, Agrawal, Pulkit, Olshausen, Bruno
We present a method for storing multiple models within a single set of parameters. Models can coexist in superposition and still be retrieved individually. In experiments with neural networks, we show that a surprisingly large number of models can be effectively stored within a single parameter instance. Furthermore, each of these models can undergo thousands of training steps without significantly interfering with other models within the superposition. This approach may be viewed as the online complement of compression: rather than reducing the size of a network after training, we make use of the unrealized capacity of a network during training.
Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
Elsayed, Gamaleldin, Shankar, Shreya, Cheung, Brian, Papernot, Nicolas, Kurakin, Alexey, Goodfellow, Ian, Sohl-Dickstein, Jascha
Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich. However, it is still an open question whether humans are prone to similar mistakes. Here, we address this question by leveraging recent techniques that transfer adversarial examples from computer vision models with known parameters and architecture to other models with unknown parameters and architecture, and by matching the initial processing of the human visual system. We find that adversarial examples that strongly transfer across computer vision models influence the classifications made by time-limited human observers.
Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
Elsayed, Gamaleldin, Shankar, Shreya, Cheung, Brian, Papernot, Nicolas, Kurakin, Alexey, Goodfellow, Ian, Sohl-Dickstein, Jascha
Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich. However, it is still an open question whether humans are prone to similar mistakes. Here, we address this question by leveraging recent techniques that transfer adversarial examples from computer vision models with known parameters and architecture to other models with unknown parameters and architecture, and by matching the initial processing of the human visual system. We find that adversarial examples that strongly transfer across computer vision models influence the classifications made by time-limited human observers.
Learning Unsupervised Learning Rules
Metz, Luke, Maheswaranathan, Niru, Cheung, Brian, Sohl-Dickstein, Jascha
A major goal of unsupervised learning is to discover data representations that are useful for subsequent tasks, without access to supervised labels during training. Typically, this goal is approached by minimizing a surrogate objective, such as the negative log likelihood of a generative model, with the hope that representations useful for subsequent tasks will arise as a side effect. In this work, we propose instead to directly target a later desired task by meta-learning an unsupervised learning rule, which leads to representations useful for that task. Here, our desired task (meta-objective) is the performance of the representation on semi-supervised classification, and we meta-learn an algorithm -- an unsupervised weight update rule -- that produces representations that perform well under this meta-objective. Additionally, we constrain our unsupervised update rule to a be a biologically-motivated, neuron-local function, which enables it to generalize to novel neural network architectures. We show that the meta-learned update rule produces useful features and sometimes outperforms existing unsupervised learning techniques. We show that the meta-learned unsupervised update rule generalizes to train networks with different widths, depths, and nonlinearities. It also generalizes to train on data with randomly permuted input dimensions and even generalizes from image datasets to a text task.
Adversarial Examples that Fool both Human and Computer Vision
Elsayed, Gamaleldin F., Shankar, Shreya, Cheung, Brian, Papernot, Nicolas, Kurakin, Alex, Goodfellow, Ian, Sohl-Dickstein, Jascha
Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich. However, it is still an open question whether humans are prone to similar mistakes. Here, we create the first adversarial examples designed to fool humans, by leveraging recent techniques that transfer adversarial examples from computer vision models with known parameters and architecture to other models with unknown parameters and architecture, and by modifying models to more closely match the initial processing of the human visual system. We find that adversarial examples that strongly transfer across computer vision models influence the classifications made by time-limited human observers.
Fast Simultaneous Training of Generalized Linear Models (FaSTGLZ)
Conroy, Bryan R., Walz, Jennifer M., Cheung, Brian, Sajda, Paul
We present an efficient algorithm for simultaneously training sparse generalized linear models across many related problems, which may arise from bootstrapping, cross-validation and nonparametric permutation testing. Our approach leverages the redundancies across problems to obtain significant computational improvements relative to solving the problems sequentially by a conventional algorithm. We demonstrate our fast simultaneous training of generalized linear models (FaSTGLZ) algorithm on a number of real-world datasets, and we run otherwise computationally intensive bootstrapping and permutation test analyses that are typically necessary for obtaining statistically rigorous classification results and meaningful interpretation. Code is freely available at http://liinc.bme.columbia.edu/fastglz.